Д2. Тормозной путь автомобиля на горизонтальной дороге при скорости v_0 составляет S. Чему равен тормозной путь этого автомобиля при той же скорости на спуске α ? Коэффициент трения считать постоянным.

Вариант 2

 ${\cal I}$ 2. Автомобиль массой m тормозит, двигаясь по горизонтальной прямой. Сила сопротивления воздуха зависит от скорости $R_c=kv$, коэффициент трения f. За какое время скорость автомобиля уменьшится с v_0 до v_1 ?

Вариант 3

 $\mathcal{L}\mathbf{2}$. На автомобиль, который тормозит, двигаясь по горизонтальной прямой, действует сила сопротивления воздуха, зависящая от скорости, $R_c = kv$. Какой путь пройдет автомобиль, прежде чем его скорость уменьшится с v_0 до v_1 ? Коэффициент трения f, масса автомобиля m.

Вариант 4

 $\mathcal{A}2$. Материальная точка массой m движется по криволинейной траектории под действием постоянной по величине равнодействующей силы Q. Найти скорость точки в момент, когда радиус кривизны траектории ρ и угол между силой Q и вектором скорости α .

Вариант 5

 $\mathcal{A}2$. Материальная точка массой m движется из состояния покоя по гладкой криволинейной направляющей, расположенной в горизонтальной плоскости, под действием силы $F=Q\sin kt$. Определить скорость точки в момент времени t. Сила образует постоянный угол α с вектором скорости.

Вариант 6

 $\mathcal{A}2.$ В сухую погоду автомобиль проходит закругление на дороге на предельной скорости v_1 . Найти предельную скорость прохождения этого же поворота после дождя, когда коэффициент трения уменьшается в 4 раза. Считать, что автомобиль не опрокидывается.

Вариант 7

 \mathcal{L} 2. Материальная точка массой m движется из состояния покоя по гладкой направляющей радиуса R, расположенной в горизонтальной плоскости, под действием силы Q. Определить реакцию направляющей через время t. Вектор силы направлен внутрь вогнутости окружности и образует постоянный угол α с вектором скорости.

Вариант 8

 $\mathcal{A}2$. Сила сопротивления воды при движении катера пропорциональна скорости $R_c=k_1v$. При этом максимальная скорость катера v_{max} . Найти предельную скорость этого же катера, если бы сила сопротивления зависела от квадрата скорости $R_c=k_2v^2$.

 $\mathcal{A}2$. Автомобиль массой m разгоняется до некоторой скорости за время t_1 . Сила сопротивления пропорциональна скорости $R_c=kv$. Чему будет равно время разгона до той же скорости при отсутствии сопротивления?

Вариант 10

 $\mathcal{L}\mathbf{2}$. Автомобиль массой m разгоняется до некоторой скорости за время t_1 . Сила сопротивления пропорциональна скорости $R_c = kv$. Чему будет равно время разгона, если силу тяги автомобиля увеличить вдвое?

Вариант 11

Д2. Теплоход массой m после выключения двигателя движется со скоростью v_0 . Сопротивление воды пропорционально квадрату скорости и равно R при скорости 1 м/с. Какое расстояние пройдет теплоход, прежде чем его скорость уменьшится вдвое?

Вариант 12

Д2. Катер массой m после остановки двигателя движется со скоростью v_0 . Сила сопротивление воды пропорциональна квадрату скорости и равна R при скорости 1 м/с. За какое время скорость катера уменьшится до v_1 ?

Вариант 13

 $\mathcal{A}2$. Автомобиль начинает движение из состояния покоя по окружности радиуса R с постоянным ускорением a. Через какое время автомобиль соскользнет с окружности? Коэффициент трения f.

Вариант 14

Д2. Определить угол наклона ствола орудия к горизонту, если максимальная высота траектории H, начальная скорость снаряда v_o . Сопротивление воздуха не учитывать.

Вариант 15

Д2. Автомобиль массой m, имея скорость v_0 , начинает тормозить. Сила торможения пропорциональна скорости и в момент начала торможения равна R. Найти тормозной путь автомобиля.

Вариант 16

 $\mathcal{L}\mathbf{2}$. Тепловоз массой m, имея скорость v_0 , начинает тормозить. Сила торможения пропорциональна скорости и в момент начала торможения равна R. Через какое время скорость тепловоза уменьшится вдвое?

Вариант 17

 $\mathcal{L}\mathbf{2}$. С какой скорость приземлится парашютист массой m, прыгнувший без начальной вертикальной скорости с высоты H. Сила сопротивления воздуха R.

 $\mathcal{A}\mathbf{2}$. Самосвал без груза разгоняется с места до скорости v^* за время t^* . За какое время разгонится до той же скорости груженый самосвал, масса которого при погрузке увеличилась вдвое ? Коэффициент трения f.

Вариант 19

 $\mathcal{A}\mathbf{2}$. За какое минимальное время автомобиль с постоянной скоростью объедет квадрат со стороной a, огибая углы по дугам окружности? Коэффициент трения f. Считать, что на поворотах возможно соскальзывание, но не опрокидывание.

Вариант 20

 $\mathcal{L}\mathbf{2}$. С аэростата сбросили балласт, его падение замедлилось, и через время τ он поднялся на ту высоту, с которой сбросили балласт. Сколько времени после сброса балласта аэростат опускался? Сила сопротивления воздуха R=const, подъемная сила аэростата T, масса -m.

Вариант 21

 $\mathcal{A}2$. Воздушный шар массой m_1 падает вниз. В момент, когда скорость шара равна v_0 , а ускорение a_0 , сбросили балласт m_2 . Как долго после этого будет продолжаться падение шара? Сила сопротивления воздуха пропорциональна скорости, подъемная сила равна F.

Вариант 22

 $\mathcal{A}2$. Тормозной путь автомобиля на горизонтальной дороге при скорости v_1 равен S. Чему равен тормозной путь этого автомобиля при той же скорости на спуске α ? Коэффициент трения f. Силу сопротивления воздуха считать постоянной.

Вариант 23

 $\mathcal{L}\mathbf{2}$. Аэростат массой M падает вниз с ускорением a. Какой балласт необходимо сбросить, чтобы через некоторое время аэростат поднимался вверх с тем же ускорением? Сила сопротивления воздуха R=const.

Вариант 24

 $\mathcal{A}\mathbf{2}$. Воздушный шар массой M падает вниз. На высоте H скорость шара равна v_0 , а ускорение a_0 . Какой балласт необходимо сбросить, чтобы шар мягко (v=0) приземлился? Силу сопротивления воздуха считать постоянной.

Вариант 25

Д2. Автомобиль массой M без груза разгоняется с места до скорости v_0 за время t_1 . За какое время разгоняется до той же скорости автомобиль с грузом m? Сопротивление пропорционально скорости.

Вариант 26

 $\mathcal{L}\mathbf{2}$. Грузовик массой m имеет максимальную скорость v_1 и разгоняется с места до v_0 за время t_0 . Чему равна средняя сила тяги грузовика? Сила сопротивления пропорциональна скорости.

 $\mathcal{A}2$. Воздушный шар массой m имеет в начале подъемную силу T. Скорость ветра v_1 . За счет негерметичности оболочки шара его подъемная сила со временем равномерно уменьшается. Пролетев расстояние S, шар падает. Найти вертикальную скорость шара в момент падения.

Вариант 28

 $\mathcal{L}2$. Автомобиль без груза разгоняется с места до скорости v_0 за время t_1 . Какую скорость он разовьет за то же время с грузом, составляющим 50% массы автомобиля? Коэффициент трения f.

Вариант 29

 $\mathcal{A}\mathbf{2}$. По мере подъема воздушного шара массой M его начальная подъемная сила T_0 равномерно с высотой уменьшается за счет охлаждения воздуха в оболочке. Максимальная высота подъема H. Найти скорость шара на высоте h.

Вариант 30

Д2. Воздушный шар массой M падает вниз. В момент, когда скорость шара равна v_0 , а ускорение a_0 , сбросили балласт m. На сколько метров после этого еще опустится шар? Сила сопротивления воздуха пропорциональна скорости, подъемная сила F=const.