Лекции по динамике

 

 

Главная

Лекция 8. Принцип возможных перемещений и общее уравнение динамики.

В данной лекции рассматриваются следующие вопросы:

1. Возможные перемещения. Классификация связей.

2. Принцип возможных перемещений при равновесии материальной системы. Общее уравнение статики.

3. Принцип возможных перемещений при движении материальной системы. Общее уравнение динамики

4. Обобщенные координаты.

5. Обобщенные силы.

6. Уравнения равновесия Лагранжа.

7. Обобщенные силы инерции.

8. Уравнения Лагранжа.

Изучение данных вопросов необходимо для изучения демпферов в дисциплине «Детали машин», для решения задач в дисциплинах «Теория машин и механизмов» и «Сопротивление материалов».  

 

Возможные перемещения. Классификация связей.

При изучении равновесия системы тел методами так называемой геометрической статики приходится рассматривать равновесие каждого из тел в отдельности, заменяя наложенные связи соответствующими наперед неизвестными реакциями. Когда число тел в системе велико, этот путь становится весьма громоздким и связан с необходимостью решать большое число уравнений со многими неизвестными.

Отличительная особенность метода, вытекающего из принципа возможных перемещений, состоит в том, что при его применении эффект действия связей учитывается не путем введения неизвестных наперед реакций, а путем рассмотрения перемещений, которые можно сообщить точкам системы, если вывести систему из занимаемого ею положения. Эти перемещения называют в механике возможными перемещениями.

Рассмотрим возможные перемещения точки М на стержне, прикрепленном к неподвижной поверхности шарниром О (рис.2,а). Конечно, стержень позволяет точке двигаться по сферической поверхности в любом направлении и на любое расстояние. Все эти перемещения возможны. Возможно, кстати, перемещение и вниз. Но такое перемещение не стоит называть возможным, потому что нарушается связь, стержень.

Кроме того, возможным перемещением будем называть только малое перемещение, настолько малую часть траектории, что ее можно заменить прямой, отрезком касательной.

Теперь можно сформулировать определение возможного перемещения.

Возможным перемещением   точки материальной системы будем называть ее бесконечно малое перемещение, допускаемое связями этой системы.  

Возможные перемещения точек системы должны удовлетворять двум условиям:

1) они должны быть бесконечно малыми, так как при конечных перемещениях система перейдет в другое положение, где условия равновесия могут быть другими;

2) они должны быть такими, чтобы при этом все наложенные на систему связи сохранялись, так как иначе мы изменим, вид рассматриваемой механической системы (система станет другой).

Например, для кривошипно-шатунного механизма, изображенного на рис.1 перемещение точек кривошипа ОА в положение ОА1 нельзя рассматривать как возможное, так как в этом положении условия равновесия механизма под действием сил  и  будут уже другими. Точно так же нельзя считать возможным даже бесконечно малое перемещение точки В шатуна вдоль линии BD; оно было бы возможным, если в точке В вместо ползуна была бы качающаяся муфта, т.е. когда механизм был бы другим.

Рис.1

 

Таким образом, возможным перемещением системы мы будем называть любую совокупность бесконечно малых перемещений точек системы, допускаемых в данный момент всеми наложенными на систему связями. Возможное перемещение любой точки системы будем изображать элементарным вектором , направленным в сторону перемещения.

В общем случае для точек и тел системы может существовать множество возможных различных перемещений (перемещения  и  мы не считаем разными). Однако для каждой системы, в зависимости от характера наложенных на нее связей, можно указать определенное число таких независимых между собой перемещений, что всякое другое возможное перемещение будет получаться как геометрическая сумма. Например, шарик, лежащий на какой-нибудь плоскости (или поверхности), можно переместить вдоль этой плоскости по множеству направлений. Однако любое его возможное перемещение  можно получить как сумму двух перемещений  и  вдоль лежащих в этой плоскости взаимно перпендикулярных осей ().

Число независимых между собою возможных перемещений системы называется числом степеней свободы этой системы. Так, рассмотренный выше шарик на плоскости (или на поверхности), если его считать материальной точкой, имеет 2 степени свободы. У кривошипно-шатунного механизма будет, очевидно, одна степень свободы.

У свободной материальной точки – 3 степени свободы (независимыми будут 3 перемещения вдоль взаимно перпендикулярных осей). Свободное твердое тело имеет 6 степеней свободы (независимыми перемещениями будут: 3 поступательных перемещения вдоль осей координат и 3 вращательных вокруг этих осей).

К этому следует добавить несколько замечаний.

Первое. Само название таких перемещений показывает, что они только возможны, но не обязательны; что этих перемещений из данного положения системы может быть много; что среди них только одно есть действительное (Если связи – не стационарные, изменяются с течением времени, то действительное перемещение может не быть одним из возможных); что эти перемещения происходят не под действием сил, приложенных к системе, а, так сказать, по нашему желанию.

Второе. За счет малости таких перемещений направляются они по касательной к траектории и имеют, таким образом, направление, совпадающее с вектором скорости. Эту скорость в данном случае также называют возможной скоростью, а не действительной.   

Третье. При наличии связей между точками материальной системы, возможные перемещения этих точек связаны между собой определенными зависимостями, уравнениями связей.

На рис.2 дано несколько примеров возможных перемещений точек некоторых материальных систем.

Из этих примеров следует, что возможным перемещением всего тела, вращающегося вокруг оси, является малый угол поворота . И возможные перемещения точек его можно определить с помощью этого угла. Так, например,  (рис.2, а и 2, б).

17

Рис.2

 

Так как направления возможных перемещений имеют направления скоростей, то перемещения точек звена АВ (рис.64, в) определяются с помощью мгновенного центра скоростей  этого звена. А возможное перемещение всего тела при плоскопараллельном движении – есть поворот на малый угол  вокруг оси, проходящей через мгновенный центр скоростей.  Этот  угол  можно определить.

Так  как  ,  то , а перемещение ползуна В:  и точки С:  . То есть перемещения всех точек механизма можно определить через одно возможное перемещение, перемещение звена ОА, через угол . 

Аналогично, поворотом на малый угол  вокруг мгновенного центра скоростей , определяются возможные перемещения точек колеса, которое может катиться без скольжения по неподвижной прямой (рис.2, г).

Работу сил, приложенных к материальной системе, на возможном перемещении будем называть возможной работой.

Если рассмотреть различные типы материальных систем, можно обнаружить, что элементарная работа реакций многих связей на возможном перемещении окажется равной нулю. Такие связи, сумма возможных работ реакций которых на любом возможном перемещении равна нулю, называются идеальными связями. К таким связям относятся, например, все связи без трения.

Связи, которые не изменяются со временем, называются стационарными.

Есть связи, которые называют или удерживающими, или односторонними, в зависимости от того препятствуют они перемещению точки во взаимно противоположных направлениях или только в одном.

У некоторых материальных систем встречаются и довольно сложные связи, ограничивающие или только положение системы, координаты ее точек, или еще и скорость их, производные от координат по времени. Первые называют голономными, геометрическими, связями; вторые – неголономными, кинематическими, неинтегрируемыми. Мы в дальнейшем будем рассматривать системы только с голономными связями.

 

Принцип возможных перемещений при равновесии материальной системы. Общее уравнение статики.

Пусть материальная система находится в равновесии. Силы, действующие на каждую ее точку, уравновешиваются. Если  – равнодействующая  всех активных сил, приложенных к i-той точке,  а  – реакция  связей этой точки,  то (рис.3)   

17

Рис.3

 

Дадим системе какое-нибудь возможное перемещение. Все точки ее получат перемещения

Затем вычислим работу всех сил на этих перемещениях.

Так как силы, приложенные к каждой точке уравновешиваются и , то сумма работ этих сил на перемещении  будет равна нулю: . Значит и сумма работ всех сил, приложенных ко всем точкам, будет равна нулю

.

Если связи идеальные, то вторая сумма всегда равна нулю. Значит,

                                                      (1)

Этот результат, уравнение работ, называют общим уравнением статики.

При равновесии материальной системы с идеальными и стационарными связями сумма работ всех активных, задаваемых, сил на любом возможном перемещении системы из положения равновесия равна нулю.

Конечно, если у системы есть неидеальные связи, например, с трением, или упругие, вроде пружины, то в уравнение работ надо добавить возможную работу реакций этих связей.

Принцип возможных перемещений можно записать в другой форме.

Если возможные перемещения точек определить с помощью возможных скоростей:  где время - произвольная бесконечно малая величина, то уравнение работ (1) запишется так , а, поделив его на  получим

,                                                         (2)

где  – углы между направлениями сил и направлениями векторов возможных скоростей точек приложения сил.

Равенство (2) можно назвать принципом возможных скоростей, уравнением мощностей. Оно иногда бывает более удобным, так как используются конечные величины скоростей, а не бесконечно малые перемещения.

Этот принцип, общее уравнение статики, позволяет решать задачи на исследование равновесного состояния системы, в частности – находить неизвестные реакции связей. Естественно, при этом возникает вопрос: как же так, ведь реакции идеальных связей не входят в уравнение работ? Выход прост – надо сделать тело свободным, реакции отнести к разряду активных сил и затем назначать такие возможные перемещения, чтобы эти неизвестные силы совершали работу.

Общее уравнение статики – довольно эффективный метод и применять его, конечно, надо для исследования равновесия сложных систем; хотя и при решении обычных задач статики он оказывается тоже выгодным.

 

Пример 1.  Какую силу F надо  приложить  к  желобу с грузом весом Р, чтобы удержать его в равновесии (рис.4)?

17

Рис.4

 

Решение. Эту задачу можно решить известными методами статики, составляя уравнения равновесия. Но при этом придется прежде отыскать усилия в стержнях. Принцип возможных перемещений позволяет найти силу F проще, с помощью общего уравнения статики.

Показываем активные силы  и . Даем системе возможное перемещение, повернув стержень АО на угол  (рис.66). Так как желоб совершит поступательное движение, то перемещения всех его точек будут одинаковы:

где a=AO=BD.

Составляем уравнение работ: . Угол . 

Поэтому получим .    Отсюда .

 

Пример 2. На рис.5 изображена конструкция, состоящая из четырех одинаковых Т-образных рам, соединенных шарнирами К, М, Q. Опоры А и Е – шарнирно-неподвижные, В и D – шарнирно-подвижные. Определим горизонтальную составляющую  реакции опоры Е, вызванную силой , приложенной к левой раме.

17

Рис.5

 

Решение. Методы статики дадут довольно сложное и длинное решение, так как придется рассматривать равновесие четырех рам и решать систему из 12 уравнений с 12-ю неизвестными.

Принцип возможных перемещений дает более простое и короткое решение.

Надо изменить конструкцию опоры Е. Сделаем ее подвижной, а чтобы система осталась в равновесии, приложим к опоре силу , ту силу, которую нужно определить (рис.5,а).

Даем затем системе возможное перемещение, повернув левую раму вокруг опоры А на угол . С помощью мгновенных центров скоростей С1, С2  и  С3 каждой рамы, обнаруживаем, что ,  а   или  Составляем уравнение работ, общее уравнение статики,  или  .    Отсюда .

Чтобы   определить  вертикальную  составляющую   реакции опоры Е, ее надо вновь переделать (рис. 5,б), дать системе соответствующее возможное перемещение и составить уравнение работ.

 

Принцип возможных перемещений при движении материальной системы. Общее уравнение динамики.

По принципу Даламбера материальную систему, движущуюся под действием некоторых сил, можно рассматривать находящейся в равновесии, если ко всем точкам системы приложить их силы инерции. Значит можно воспользоваться и принципом возможных перемещений.

В уравнение работ (1) добавится еще сумма работ сил инерции точек на их возможных перемещениях:

.                          (3)

Или по принципу возможных скоростей (2):

                               (4)

Эти уравнения называют общим уравнением динамики. Оно позволяет решать большой класс задач на исследование движения довольно сложных материальных систем.

Уравнения (3) и (4) показывают, что в любой фиксированный момент времени сумма элементарных работ активных сил и сил инерции на любых виртуальных перемещениях равна нулю при условии, что на систему наложены идеальные и удерживающие связи.

Силы инерции точек и твердых тел, составляющих систему, определять уже умеем.

Стоит подчеркнуть еще одно важное достоинство этого метода, общего уравнения динамики, – реакции связей (идеальных) исключаются при исследовании движения системы.

Иногда это уравнение можно использовать для исследования движения механических систем и в тех случаях, когда не все связи являются идеальными, например, когда имеются связи с трением. Для этого следует к активным силам добавить те составляющие реакций, которые обусловлены наличием сил трения.

Рассмотрим процедуру использования уравнения (3) для составления дифференциальных уравнений движения систем с двумя степенями свободы:

1. Изобразить механическую систему в произвольный момент времени.

2. Показать на рисунке активные силы и моменты, а также силы и моменты, соответствующие неидеальным связям (например, силы трения).

3. Определить главные векторы и главные моменты сил инерции.

4. Выбрать обобщенные координаты в числе, равном числу степеней свободы системы.

5. Дать виртуальное перемещение, соответствующее одной из степеней свободы системы, считая при этом виртуальные перемещения, соответствующие остальным степеням свободы, равными нулю.

6. Вычислить сумму элементарных работ всех сил и моментов (см. п. 2 и 3) на соответствующих виртуальных перемещениях и приравнять эту сумму нулю.

7. Повторить п. 4 - 6 для каждого независимого движения системы.

При применении общего уравнения динамики к системам с двумя и большим числом степеней свободы, в связи с громоздкостью выкладок, можно использовать следующие рекомендации:

1. Сделать предположение о направлении ускорений точек системы.

2. Направить на рисунке силы инерции в стороны, противоположные выбранным направлениям соответствующих ускорений.

3. Определить знаки элементарных работ сил инерции в соответствии с их направлениями на рисунке и избранными направлениями виртуальных перемещений точек системы.

4. Если искомые ускорения оказываются положительными, то сделанные предположения о направлениях ускорений подтверждаются, если отрицательными, то соответствующие ускорения направлены в другую сторону.

 

Пример 3.  Определим ускорение груза G (рис.6). Вес цилиндра – Р, радиус – r. Цилиндр катится по плоскости без скольжения.

17

Рис.6

 

Решение. Показываем задаваемые силы – . Добавляем силы инерции. Сила инерции груза, движущегося поступательно,

.

Цилиндр совершает плоскопараллельное движение. Главный вектор сил инерции точек его

Главный  момент  сил  инерции относительно  центральной  оси  С:

Даем системе возможное перемещение, сдвинув груз вниз на малую величину . Центр цилиндра сместится вправо на величину , а весь цилиндр  повернется  вокруг  мгновенного  центра  скоростей   на  угол       

Вычисляем работу сил на этих перемещениях и составляем уравнение работ, общее уравнение динамики,

Так как , то, подставив значения сил инерции, получим уравнение

из которого находим

 

Обобщенные координаты

Обобщенными координатами мы будем называть параметры, которые определяют положение материальной системы.

Это могут быть обычные декартовы координаты точек, углы поворота, расстояния, площади, объемы и т.д.

Так на рис.7 положение балочки АВ и всех ее точек вполне определяется углом .

18

Рис.7

 

Положение точек кривошипно-шатунного механизма (рис.8) можно определить заданием угла поворота  кривошипа или расстоянием s, определяющим  положение ползуна В (при ).

18

Рис.8

 

Положение сферического маятника (рис.9) определяется заданием двух параметров, углов  и .

18

Рис.9

 

Минимальное количество независимых друг от друга обобщенных  координат,  которых достаточно,  чтобы  полностью  и  однозначно определить  положение  всех  точек системы,  называют числом  степеней свободы этой   системы.

Вообще для любой материальной системы можно назначить несколько обобщенных   координат.  Например, у кривошипно-шатунного механизма (рис.8) указаны две обобщенные координаты  и s. Но это не значит, что у механизма  две степени свободы,  так как одну  координату можно определить через другую: 

.

А вот у маятника (рис.71) две степени свободы, т.к. определяется его положение двумя независимыми обобщенными координатами. Кстати, если длина маятника изменяется, то для определения положения точки М потребуется еще один параметр – обобщенная координата  l , длина нити. И у маятника станут три степени свободы.

Обобщенные  координаты  в  общем случае  будем  обозначать  буквой q.

Пусть материальная система имеет s степеней свободы. Положение ее определяется обобщенными координатами: q1, q2, q3,…, qk,…, qs. .

Нетрудно убедиться, что декартовы координаты n точек системы можно определить как функции обобщенных координат и времени:

 

 

Так у маятника (рис.9) координаты точки М

 

есть функции координат  l,  и , и времени t, если  l = l(t).

Соответственно, и радиус-вектор точек системы можно определить как функцию обобщенных координат и времени:

                       (6)

 

Обобщенные силы

Каждой обобщенной координате  можно вычислить соответствующую ей обобщенную силу Qk.

Вычисление производится по такому правилу.

Чтобы определить обобщенную силу Qk, соответствующую обобщенной координате qk, надо дать этой координате приращение  (увеличить координату на эту величину), оставив все другие координаты неизменными, вычислить сумму работ всех сил, приложенных к системе, на соответствующих перемещениях точек и поделить ее на приращение координаты :

где –  перемещение i-той точки системы, полученное за счет изменения k–той обобщенной координаты.

Обобщенная сила определяется с помощью элементарных работ. Поэтому эту силу можно вычислить иначе:

И так как  есть приращение радиуса-вектора  за счет приращения координаты  при остальных неизменных координатах и времени t, отношение  можно определять как частную производную . Тогда

 

где координаты точек – функции обобщенных координат (5).

Если система консервативная, то есть движение происходит под действием сил потенциального поля, проекции которых   , где  а координаты точек – функции обобщенных координат, то

Обобщенная сила консервативной системы есть частная производная от потенциальной энергии по соответствующей обобщенной координате со знаком минус.

Конечно, при вычислении этой обобщенной силы потенциальную энергию следует определять как функцию обобщенных координат

П = П(q1, q2, q3,…,qs).

Замечания.

Первое. При вычислении обобщенных сил реакции идеальных связей не учитываются.

Второе. Размерность обобщенной силы зависит от размерности обобщенной координаты. Так если размерность [q] – метр, то размерность

[Q]= Нм/м = Ньютон, если [q] – радиан, то [Q] = Нм;  если [q] = м2,  то [Q]=H и т.п.

 

Пример 4. По качающемуся в вертикальной  плоскости стержню скользит колечко М весом Р (рис.10). Стержень считаем невесомым. Определим обобщенные силы.

18

Рис.10

 

Решение. Система имеет две степени свободы. Назначаем две обобщенные координаты s и .

Найдем обобщенную силу, соответствующую  координате  s.  Даем  приращение  этой координате, оставляя координату  неизменной, и вычислив работу единственной активной силы  Р, получим  обобщенную силу 

Затем даем приращение  координате , полагая s = const. При  повороте стержня на угол  точка приложения силы  Р,  колечко М,  переместится на .  Обобщенная  сила  получится

Так как система консервативная, обобщенные силы можно найти и с помощью потенциальной энергии .   Получим  и .  Получается гораздо проще.

 

Уравнения равновесия Лагранжа

По определению (7) обобщенные силы ,  k = 1,2,3,…,s,   где s – число степеней свободы.

Если система находится в равновесии, то по принципу возможных перемещений (1) . Здесь  – перемещения, допускаемые связями, возможные перемещения. Поэтому при равновесии материальной системы все ее обобщенные силы равны нулю:

Qk = 0,  (k=1,2,3,…, s).                                                                       (10)

Эти уравнения, уравнения равновесия в обобщенных координатах или уравнения равновесия Лагранжа, позволяют решать задачи статики еще одним методом.

Если система консервативная, то .  Значит, в положении равновесия . То есть в положении равновесия такой материальной системы ее потенциальная энергия либо максимальна, либо минимальна, т.е. функция П(q) имеет экстремум.

Это очевидно из анализа простейшего примера (рис.11). Потенциальная энергия шарика в положении М1 имеет минимум, в положении М2 – максимум. Можно заметить, что в положении М1 равновесие будет устойчивым; в положении М2 – неустойчивым.

18

Рис.11

 

Равновесие считается  устойчивым, если телу в этом положении сообщить малую скорость или сместить на малое расстояние и эти отклонения в дальнейшем не увеличатся.

Можно доказать (теорема Лагранжа-Дирихле), что если в положении равновесия консервативной системы ее потенциальная энергия имеет минимум, то это положение равновесия устойчиво.

Для консервативной системы с одной степенью свободы условие минимума потенциальной энергии, а значит и устойчивости положения равновесия, определяется, второй производной, ее значением в положении равновесия,

.                                                                      (11)   

 

Пример 5.  Стержень  ОА  весом  Р  может вращаться в вертикальной плоскости вокруг оси О (рис.12). Найдем и исследуем устойчивость положений равновесия.

18

Рис.12

 

Решение. Стержень имеет одну степень свободы. Обобщенная координата – угол .

Относительно нижнего, нулевого, положения потенциальная энергия П=Рh или

В положении равновесия должно быть . Отсюда имеем два положения равновесия, соответствующие углам  и  (положения ОА1 и ОА2). Исследуем их устойчивость. Находим вторую производную . Конечно, при ,  .  Положение равновесия устойчиво. При ,  . Второе положение равновесия – неустойчиво. Результаты очевидны.

 

Обобщенные силы инерции.

По той же методике (8), по которой вычислялись обобщенные силы Qk, соответствующие активным, задаваемым, силам, определяются и обобщенные силы Sk, соответствующие силам инерции точек системы:

И, так как   то

Немного математических преобразований.

Очевидно,

Отсюда

Так как  а   qk = qk(t), (k = 1,2,3,…, s), то

Значит, частная производная скорости  по

Кроме того, в последнем члене (14) можно поменять порядок дифференцирования:

Подставляя (15) и (16) в (14), а потом (14) в (13), получим

Разделив последнюю сумму на две и, имея ввиду, что сумма производных равна производной от суммы, получим 

где   – кинетическая энергия системы,  - обобщенная скорость.

 

Уравнения Лагранжа.

По определению (7) и (12) обобщенные силы 

Но на основании общего уравнения динамика (3), правая часть равенства равна нулю. И так как все  (k = 1,2,3,…,s) отличны от нуля, то . Подставив значение обобщенной силы инерции (17), получим уравнение     

Эти уравнения называются дифференциальными уравнениями движения в обобщенных координатах, уравнениями Лагранжа второго рода или простоуравнениями Лагранжа.

Количество этих уравнений равно числу степеней свободы материальной системы.

Если система консервативная и движется под действием сил потенциального поля, когда обобщенные силы , уравнения Лагранжа можно составить по форме

Или

где L = TП называется функцией Лагранжа (предполагается, что потенциальная энергия П не зависит от обобщенных скоростей).

Нередко при исследовании движения материальных систем оказывается, что некоторые обобщенные координаты qj не входят явно в функцию Лагранжа (или в Т и П). Такие координаты называют циклическими. Уравнения Лагранжа, соответствующие этим координатам, получаются проще.

.

Первый интеграл таких уравнений находится сразу. Он называется циклическим интегралом:

Дальнейшие исследования и преобразования уравнений Лагранжа составляют предмет специального раздела теоретической механики – «Аналитическая механика».

Уравнения Лагранжа обладают целым рядом достоинств в сравнении с другими способами исследования движения систем. Основные достоинства: методика составления уравнений одинакова во всех задачах, реакции идеальных связей не учитываются при решении задач.

И еще одно – эти уравнения можно использовать для исследования не только механических, но и других физических систем (электрических, электромагнитных, оптических и др.).

 

Пример 6. Продолжим исследование движение колечка М на качающемся стержне (пример 4).

Обобщенные координаты назначены –  и s (рис.13). Обобщенные силы определены:  и  .

18

Рис.13

 

Решение. Кинетическая энергия колечка    Где  а   и   .

Поэтому

Составляем два уравнения Лагранжа

то уравнения получаются такими:

или

Получили два нелинейных дифференциальных уравнения второго порядка, для решения которых нужны специальные методы.

 

Пример 7. Составим дифференциальное уравнение движения балочки АВ, которая перекатывается без скольжения по цилиндрической поверхности (рис.14). Длина балочки АВ = l, вес – Р.

В положении равновесия балочка располагалась горизонтально и центр тяжести С ее находился на верхней точке цилиндра. Балочка имеет одну степень свободы. Положение ее определяется обобщенной координатой – углом  (рис.76).

18

Рис.14

 

Решение. Система консервативная. Поэтому уравнение Лагранжа составим с помощью потенциальной энергии П=mgh, вычисленной относительно горизонтального положения. В точке касания находится мгновенный центр скоростей и  ( равно длине дуги окружности с углом ).

Поэтому  (см. рис.76)  и .

Кинетическая энергия (балка совершает плоскопараллельное движение)

Находим необходимые производные для уравнения и    

Составляем уравнение

или, окончательно, 

 

Вопросы для самопроверки

- Что называется возможным перемещением несвободной механической системы?

- Как взаимосвязаны возможные и действительные перемещения системы?

- Какие связи называются: а) стационарными; б) идеальными?

- Сформулируйте принцип возможных перемещений. Запишите его формульное выражение.

- Возможно ли применение принципа виртуальных перемещений к системам с неидеальными связями?

- Что представляют собой обобщенные координаты механической системы?

- Чему равно число степеней свободы механической системы?

- В каком случае декартовы координаты точек системы зависят не только от обобщенных координат, но и от времени?

- Что называют возможными перемещениями механической системы?

- Зависят ли возможные перемещения от действующих на систему сил?

- Какие связи механической системы называют идеальными?

- Почему связь, осуществленная с трением, не является идеальной связью?

- Как формулируется принцип возможных перемещений?

- Какие виды может иметь уравнение работ?

- Почему принцип возможных перемещений упрощает вывод условий равновесия сил, приложенных к несвободным системам, состоящим из большого числа тел?

- Как составляются уравнения работ для сил, действующих на механическую систему с несколькими степенями свободы?

- Какова зависимость между движущей силой и силой сопротивления в простейших машинах?

- Как формулируется золотое правило механики?

- Каким образом определяют реакции связей с помощью принципа возможных перемещений?  

- Какие связи называются голономными?

- Что называется числом степеней свободы механической системы?

- Что называется обобщенными координатами системы?

- Сколько обобщенных координат имеет несвободная механическая система?

- Сколько степеней свободы имеет управляемое колесо автомобиля?

- Что называется обобщенной силой?

- Запишите формулу, выражающую полную элементарную работу всех приложенных к системе сил в обобщенных координатах.

- Как определяется размерность обобщенной силы?

- Как вычисляются обобщенные силы в консервативных системах?

- Запишите одну из формул, выражающих общее уравнение динамики системы с идеальными связями. Каков физический смысл этого уравнения?

- Что называется обобщенной силой активных сил, приложенных к системе?

- Что такое обобщенная сила инерции?

- Сформулируйте принцип Даламбера в обобщенных силах.

- Какой вид имеет общее уравнение динамики?

- Что называется обобщенной силой, соответствующей некоторой обобщенной координате системы, и какую она имеет размерность?

- Чему равны обобщенные реакции идеальных связей?

- Выведите общее уравнение динамики в обобщенных силах.

- Какой вид имеют условия равновесия сил, приложенных к механической системе, полученные из общего уравнения динамики в обобщенных силах?

- Какими формулами выражаются обобщенные силы через проекции сил на неподвижные оси декартовых координат?

- Как определяются обобщенные силы в случае консервативных и в случае неконсервативных сил?

- Какие связи называются геометрическими?

- Приведите векторную запись принципа возможных перемещений.

- Назовите необходимое и достаточной условие равновесия механической системы с идеальными стационарными геометрическими связями.

- Каким свойством обладает силовая функция консервативной системы в состоянии равновесия? 

- Запишите систему дифференциальных уравнений Лагранжа второго рода.

- Сколько уравнений Лагранжа второго рода можно составить для несвободной механической системы?

- Зависит ли число уравнений Лагранжа механической системы от количества тел, входящих в состав системы?

- Что называется кинетическим потенциалом системы?

- Для каких механических систем существует функция Лагранжа?

- Функцией каких аргументов является вектор скорости точки, принадлежащей механической системе с s степенями свободы?

- Чему равна частная производная от вектора скорости точки системы по какой-либо обобщенной скорости?

- Функцией каких аргументов является кинетическая энергия системы, подчиненной голономным нестационарным связям?

- Какой вид имеют уравнения Лагранжа второго рода? Чему равно число этих уравнений для каждой механической системы?

- Какой вид принимают уравнения Лагранжа второго рода в случае, когда на систему действуют одновременно консервативные и неконсервативные силы?

- Что представляет собой функция Лагранжа, или кинетический потенциал?

- Какой вид имеют уравнения Лагранжа второго рода для консервативной системы?

- В зависимости от каких переменных величин должна быть выражена кинетическая энергия механической системы при составлении уравнений Лагранжа?

- Как определяется потенциальная энергия механической системы, находящейся под действием сил упругости?

 

Задачи для самостоятельного решения

Задача 1. Применяя принцип возможных перемещений, определить реакции связей составных конструкций. Схемы конструкций показаны на рис. 15, а необходимые для решения данные приведены в табл. 1. На рисунках все размеры указаны в метрах.

 

Таблица 1

Вариант

Нагрузка

Вариант

Нагрузка

Р1,

кН

Р2,

кН

q,

кН/м

M,

кНм

Р1,

кН

Р2,

кН

q,

кН/м

M,

кНм

1

15

14

3

10

16

3

10

2

10

2

13

12

2

6

17

1

8

1

8

3

11

10

1

5

18

3

6

3

6

4

9

8

3

14

19

5

4

2

7

5

7

6

2

12

20

7

2

1

5

6

8

5

1

4

21

10

9

2

4

7

7

4

2

10

22

8

7

1

7

8

6

6

1

7

23

6

5

2

8

9

5

8

3

8

24

4

3

1

3

10

4

10

2

6

25

2

1

2

2

11

12

11

1

12

26

7

1

2

7

12

10

6

2

10

27

6

2

1

5

13

9

5

1

6

28

5

3

2

10

14

7

10

2

13

29

4

4

1

5

15

6

8

1

5

30

3

5

2

10

 

Вариант 1                             Вариант 2

image414image424

 

Вариант 3                             Вариант 4

image482        image484     

 

Вариант 5                             Вариант 6

image532  image533

 

Вариант 7                             Вариант 8

image534   image535

 

Вариант 9                             Вариант 10

image536        image537

 

Вариант 11                             Вариант 12

image491      image493

 

Вариант 13                             Вариант 14

image496  image497

 

Вариант 15                             Вариант 16

image498       image500

 

Вариант 17                             Вариант 18

image501   image504

 

Вариант 19                             Вариант 20

image506      image507

 

Вариант 21                             Вариант 22

image508  image510

 

Вариант 23                             Вариант 24

image512     image513

 

Вариант 25                             Вариант 26

image514       image517

 

Вариант 27                             Вариант 28

image518    image519

 

Вариант 27                             Вариант 28

image521  image522

Рис. 15

 

Пример 8. Дана двухсоставная рама, части которой соединены шарниром в точке С (рис. 16), закрепленная в точках А и В с помощью неподвижных шарнирных опор. В точке D на раму CDB действует сила P1=10 кН, на раму АЕС действуют на участке ЕС распределенная по линейному закону нагрузка с максимальной интенсивностью q = 4 кН/м и пара сил с моментом m1 = 5 кНм (см. рис. 16). Определить горизонтальную составляющую реакции шарнирной опоры А. Трение в шарнирах отсутствует. Размеры элементов рам на рис. 16 даны в метрах.

        

Рис.16                                               Рис.17

 

Решение. Легко проверить, что в данной задаче все условия применения принципа Лагранжа выполнены (система находится в равновесии, связи являются стационарными, голономными, удерживающими и идеальными).

Освободимся от связи, соответствующей реакции XA (рис. 17). Для этого в точке A неподвижный шарнир следует заменить, например, стержневой опорой, при этом система получает одну степень свободы. Как уже отмечалось, возможное перемещение системы определяется связями, наложенными на нее, и не зависит от приложенных сил. Поэтому определение возможных перемещений является кинематической задачей. Поскольку в данном примере рама может двигаться лишь в плоскости рисунка, то и возможные ее движения являются плоскими. При плоском же движении перемещение тела можно рассматривать как поворот вокруг мгновенного центра скоростей. Если же мгновенный центр скоростей лежит в бесконечности, то это соответствует случаю мгновенно поступательного движения, когда перемещения всех точек тела одинаковы.

Для нахождения мгновенного центра скоростей необходимо знать направления скоростей двух каких-либо точек тела. Поэтому определение возможных перемещений составной конструкции следует начинать с нахождения возможных перемещений того элемента, у которого такие скорости известны. В данном случае следует начать с рамы CDB, поскольку ее точка В неподвижна и, следовательно, возможным перемещением этой рамы является ее поворот на угол  вокруг оси, проходящей через шарнир B. Теперь, зная возможное перемещение  точки С (она одновременно принадлежит обеим рамам системы) и возможное перемещение  точки А (возможным перемещением точки A является ее перемещение вдоль оси х), находим мгновенный центр скоростей C1 рамы АЕС. Таким образом, возможным перемещением рамы АЕС является ее поворот вокруг точки C1 на угол . Связь между углами  и  определяется через перемещение точки C (см. рис. 17)

Из подобия треугольников EC1C и BCD имеем

В результате получим зависимости:

Согласно принципу возможных перемещений

Последовательно вычислим входящие сюда возможные работы:

Q=2q – равнодействующая распределенной нагрузки, точка приложения которой показана на рис. 79; совершаемая ею возможная работа равна:

Далее  и

Следовательно,

Отсюда


email: KarimovI@rambler.ru

Адрес: Россия, 450071, г.Уфа, почтовый ящик 21

 

 

 

 

Рейтинг@Mail.ru Каталог-Молдова - Ranker, Statistics