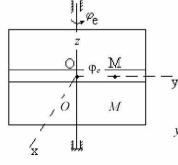
ЕН.Ф.06 ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ. ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТЕЛА

Задания для контроля знаний студентов дневной и заочной форм обучения

ЗАДАНИЯ

Задания содержат 50 вариантов задач. При решении одного варианта задания требуется определить несколько неизвестных величин и указать их направление на рисунке. Для каждой неизвестной величины

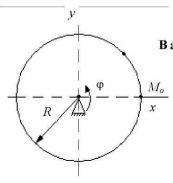

дается

5 ответов, один из которых - правильный.

Каждый вариант задания рассчитан на 20 - 30 минут работы студента. После выполнения задачи студент сдает преподавателю ее решение и ответ по форме:

Вариант №

Определяемые личины	ве-	а	6	c	d	28	е	?			
Z		Е	вариант о	ответа		1	N.	3	5	2	2

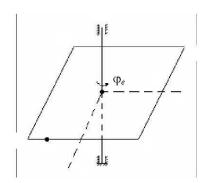

Вариант 1

$$\varphi_e = 2t$$
 рад

$$OM = S_r = 15 \sin \frac{\pi}{3} t$$
 cm, $t = \frac{1}{2}$ c

Найти: ϑ_r , ϑ_e , W_r , W_e , W_c (с указанием соответствующих векторов на рисунке)

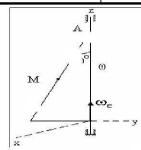
Варианты <i>х</i> этветов Опре- делжемые величины	Ĩ.	2	3	4	5	Единицы измерения
θ_r	2π √ 3	2,5π	$2,5 \pi \sqrt{3}$	7,5π√3	15π√3	CM C
ϑ_e	30	7,5	10	15√3	15	CM C
W_r	$\frac{5\pi^2}{6}$	$\frac{\pi^2}{6}$	$\frac{2}{3}\pi^2$	$\frac{2}{3}\pi$	$\frac{\pi^2}{6}$	$\frac{cM}{c^2}$
W_e	60	15	30	40	60√3	$\frac{cM}{c^2}$
W_c	5π √ 3	10π	$5\pi^2\sqrt{3}$	10 π √ 3	20π	$\frac{\text{CM}}{\text{c}^2}$


Вариант 2

$$M_o M = S_r = \frac{\pi}{4} \cos \frac{\pi}{2} t$$
 см $R = 0.5$ см $\phi_e = 3t$ рад

$$t = 1 c$$

Найти: ϑ_r , ϑ_e , W_r , W_e , W_c (с указанием соответствующих векторов на рисунке)

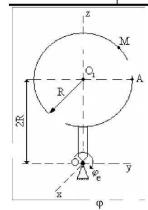

Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
θ,	$\frac{\pi}{2}$	$\frac{\pi^2}{8}$	$\frac{\pi}{4}$	$\frac{\pi^2}{2}$	π^2	CM C
ϑ_e	1,5	2	4,5	3,5	3	CM C
W_r	$\frac{\pi^4}{2}$	$\frac{\pi^4}{4}$	$2\pi^4$	$\frac{\pi^4}{32}$	$\frac{\pi^4}{16}$	$\frac{cM}{c^2}$
W_e	3	4,5	9	1,5	4	$\frac{cM}{c^2}$
W_c	$\frac{3}{4}\pi^2$	$3\pi^2$	$\frac{3}{2}\pi^2$	$\frac{\pi^2}{4}$	$\frac{3\pi^2}{16}$	$\frac{c_{M}}{c^{2}}$

$$AB = A / I = 20 \text{ cm}$$

 $BE = EC$; $AK = KB$
 $AM = S_r = 16t + 8t^2 \text{ cm}$
 $\varphi_e = 3 + 2t^2 \text{ рад}, \ t = \frac{1}{2} \text{ c}$

Найти: ϑ_r , ϑ_e , W_r , W_e , W_c (с указанием соответствующих векторов на рисунке)

Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_r	12	24	6	3	10	CM C
ϑ_e	25	4	20	30	40	CM C
W_r	4	20	6	16	32	$\frac{\text{CM}}{\text{c}^2}$
W_e	20	40 √2	$\frac{30}{\sqrt{2}}$	15	80 √2	$\frac{cM}{c^2}$
W_c	48	20	24	96	12	$\frac{\text{CM}}{\text{c}^2}$

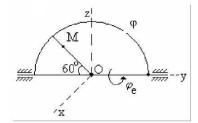

$$AM = S_r = t^3 + t \text{ cM}$$

$$\omega_e = 3t \text{ c}^{-1}$$

$$t = 1 \text{ c}$$

Найти: ϑ_r , ϑ_e , W_r , W_e , W_c (с указанием соответствующих векторов на рисунке)

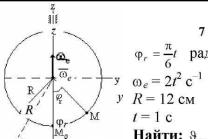
Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_r	2	6	4	3	8	СМС
ϑ_e	6	3	8	9	$\frac{3}{2}$	CM C
W_r	8	3	12	6	18	$\frac{\text{cm}}{\text{c}^2}$
W_e	3 √3	3√10	√ 10	2 √10	3 √5	$\frac{c_{M}}{c^{2}}$
W_c	6	12√3	6√3	24	12	$\frac{\text{CM}}{\text{c}^2}$


5

$$AM = S_r = \pi t$$
 см
 $\phi_e = 2t^2 - 6t$ рад
 $R = 2$ см
 $t = 1$ с

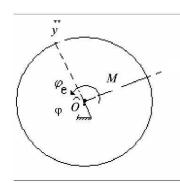
Найти: ϑ_r , ϑ_e , W_r , W_e , W_c (с указанием соответствующих векторов на рисунке)

Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_r	2π	π	1	$\frac{\pi}{2}$	4π	CM C
ϑ_e	12	6	8	24	3	CM C
W_r	$\frac{\pi^2}{4}$	π^2	$\frac{\pi^2}{2}$	$2\pi^2$	$8 \pi^2$	$\frac{cM}{c^2}$
W_e	12√3	6√2	8√2	24 √2	24	$\frac{\text{CM}}{\text{c}^2}$
W_c	4 π	2 π	π	8 π	4 π√3	$\frac{c_{M}}{c^{2}}$


Вариант 6

$$OM = S_r = 4 + t + 3t^2$$
 см
 $\phi_e = 2t$ рад
 $t = 1$ с

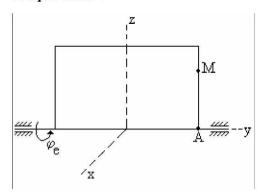
Найти: ϑ_r , ϑ_e , W_r , W_e , W_c (с указанием соответствующих векторов на рисунке)


Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_r	8	7	4	10	12	CM C
ϑ_e	8 √ 3	4 √ 3	16	2√3	6√3	CM C
W_r	8	10	6	14	12	$\frac{\text{CM}}{\text{c}^2}$
W_e	16	8√3	4√3	16√3	√ 3	$\frac{\text{CM}}{\text{c}^2}$
W_c	7	8√3	6√3	14	14√3	$\frac{\text{CM}}{\text{c}^2}$

Найти: θ_r , θ_e , W_r , W_e , W_c (с указанием соответствующих векторов на рисунке)

Варианты ответов Опре- деляемые величины	1	2	3	4	.5	Единицы измерения
ϑ_r	2 π	$\frac{\pi}{6}$	$\frac{\pi}{12}$	$\frac{\pi}{2}$	4π	CM C
ϑ_e	6	4	12	44	24	CM C
W_r	$\frac{\pi^2}{6}$	$\frac{\pi^2}{3}$	π^2	$2\pi^2$	$8\pi^2$	$\frac{\mathrm{CM}}{\mathrm{c}^2}$
W_e	16 √2	24	24 √2	8 √2	12	$\frac{\mathrm{CM}}{\mathrm{c}^2}$
W_c	$4\pi\sqrt{3}$	4 π	π √ 3	8 π	2 π √ 3	$\frac{\mathrm{CM}}{\mathrm{c}^2}$

Вариант 8


$$OM = S_r = 6 + 4t^2 \text{ cM}$$

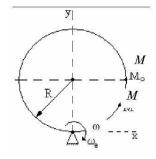
 $\varphi_e = t^2 \text{ рад}$

t = 1 c

Найти: ϑ_r , ϑ_e , W_r , W_e , W_c (с указанием соответствующих векторов на рисунке)

Варианты Ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_r	8	10	14	4	6	CM C
ϑ_e	10	20	40	6	12	CM C
W_r	16	10	6	32	8	$\frac{\text{CM}}{\text{c}^2}$
W_e	10√5	20 √5	28√2	40√5	25 √5	$\frac{\text{CM}}{\text{c}^2}$
W_c	32	16	64	8	28	$\frac{cM}{c^2}$

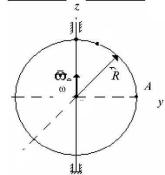
Вариант 9



$$AM = S_r = 2 + 3t + 5t^2$$
 см $\varphi_e = 3 + 0.5t^2$ рад $t = 1$ с

Найти: ϑ_r , ϑ_e , W_r , W_e , W_c (с указанием соответствующих векторов на рисунке)

Варианты						[Ы ИЯ
Опре-	1	2	3	4	5	инип
деляемые						Едизм
величины						

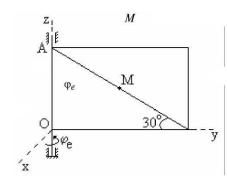

ϑ_r	13	26	10	8	20	CM C
ϑ_e	5	25	10	18	12	CM C
W_r	10	15	13	12	20	$\frac{\text{cm}}{\text{c}^2}$
W_e	20 √2	$\frac{10}{\sqrt{2}}$	15	10√3	25 √2	$\frac{c_{M}}{c^{2}}$
W_c	20	10	26	16	40	$\frac{c_{M}}{c^{2}}$

$$M_o M = S_r = 2\pi \cos \frac{\pi}{2} t$$
 cm
 $\omega_e = 2 \text{ c}^{-1} \text{ (const)}$
 $R = 0.5 \text{ cm}$

Найти: ϑ_r , ϑ_e , W_r , W_c (с указанием соответствующих векторов на рисунке)

Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_r	π^2	2 π	π	$2\pi^2$	$4 \pi^2$	CM C
ϑ_e	2	√ 2	1	1,5	$2\sqrt{2}$	CM C
W_r	$4 \pi^2$	$2\pi^3$	$4\pi^4$	$8\pi^4$	$2\pi^4$	$\frac{\text{CM}}{\text{c}^2}$
W_e	$2\sqrt{2}$	$\sqrt{2}$	4√2	8	8π	$\frac{\text{CM}}{\text{c}^2}$
W_c	$2 \pi^2$	8 π	$4\pi^2$	π^2	6	$\frac{\text{CM}}{\text{c}^2}$

$$AM = S_r = 5 \pi \left(t^2 - \frac{t^3}{3}\right) c_M$$


$$\omega_e = 2 \text{ c}^{-1} \text{ (const)}$$

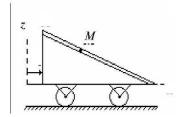
 $R = 20 \text{ cm}$

$$R = 20 \text{ cm}$$

$$t = 1 c$$

Найти: ϑ_r , ϑ_e , W_r , W_e , W_c (с указанием соответствующих векторов на рисунке)

		Опр	oe-	ты	1	2	3	4	5	Единицы измерения
			яемые ` ичины							
9,	15 π	$\frac{10}{\sqrt{3\pi}}$	5 π	10 π	20	CM C				
ϑ_e	10	5 √ 3	20√2	20√3	$\frac{10}{\sqrt{2}}$	СМС				
W_r	$4 \pi^2$	2 π	$\frac{5}{4}\pi^2$	$\frac{3}{2}\pi^2$	$\frac{\pi^2}{2}$	$\frac{\text{CM}}{\text{c}^2}$				
W_e	20√3	30 π	40√3	30	$\frac{20}{\sqrt{2}}$	$\frac{c_{M}}{c^{2}}$				
A	30π	5 π	40	$10\pi^2$	10 π	$\frac{\text{CM}}{\text{c}^2}$	2.7			



$$AM = S_r = 5t + 2,5t^2$$
 см $\phi_e = 3t$ рад $t = 2$ с

 W_r , W_e , W_c Найти: ϑ_r ,

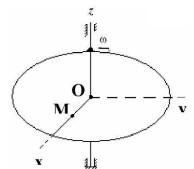
(с указанием соответствующих векторов на рисунке)

Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_r	30	26	15	32	52	CM C
ϑ_e	20√3	30√3	5 √3	25 √2	7,5	CM C
W_r	5	15	10√3	10	15	$\frac{\text{CM}}{\text{c}^2}$
W_e	90	100√3	45	90√3	30	$\frac{\text{CM}}{\text{c}^2}$
W_c	9√3	60	45 √3	64	104√3	$\frac{\text{CM}}{\text{c}^2}$

$$AM = S_r = 10t + 4t^2 \text{ cm}$$

$$x_e = 20 \cos \frac{\pi t}{4} \text{ cm}$$

$$t = 1 c$$


Найти: $\vartheta_r, \ \vartheta_e, \ W_r, \ W_e, \ W_c$ (с указанием соответствующих векторов на ри-

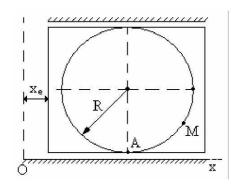
14

64

сунке)

Варианты ответов Опре- деляемые	1	2	3	4	5	Единицы измерения	-	
<u>величины</u> 9,	9	18	1.4	20	22	СМ		
	9	18	14	28	32	С	- 74	
ϑ_e	π√2	$10 \sqrt{\pi}$	$2,5$ $\pi\sqrt{2}$	25 π	5 π	CM C	_	
W_r	10	4	18	8	12	$\frac{c_{M}}{c^{2}}$		
W_e	$\frac{5\pi^2\sqrt{2}}{8}$	5 π ²	$\frac{3}{5}\pi^2$	$1,5\pi^2$	$10\pi^2$	$\frac{c_{M}}{c^{2}}$		
			W_{c}	2	18	28	0	

$$OM = S_r = 4t + 6t^2 \text{ cm}$$


$$\omega_e = 2t \text{ c}^{-1}$$

$$t = 1 \text{ c}$$

$$\omega_e - 2i C$$

 $t = 1 C$

Найти: ϑ_r , ϑ_e , W_r , W_e , W_c (с указанием соответствующих векторов на рисунке)

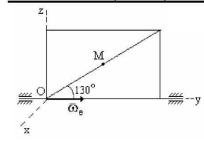
Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_r	4	10	6	16	18	CM C
ϑ_e	8	20	12	32	25	CM C
W_r	4	16	12	10	24	$\frac{\text{CM}}{\text{c}^2}$
$\overline{W_e}$	32	20√5	30√3	40√5	16	$\frac{\text{CM}}{\text{c}^2}$
W_c	64 √2	20	36	18	64	$\frac{\text{CM}}{\text{c}^2}$

$$AM=S_r=10\,\pi\sin\pi t$$
 см $x_e=10\,\pi^2 t^2$ см

$$R = 10 \text{ cm}$$

$$t = 1 c$$

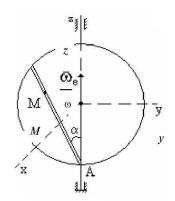
 ϑ_e , W_r ,


 W_e ,

 W_c

(с указанием соответствующих векторов на рисунке)

 ϑ_r ,


Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_r	10 π√3	$5 \pi^2$	$10 \pi^2$	10 π	$20\pi^2$	CM C
ϑ_e	$10\pi^2$	$20\pi^2$	40 π	$40\pi^2$	20 π	CM C
W_r	π^4	$20\pi^4$	$100 \pi^4$	$10\pi^4$	0	$\frac{\text{CM}}{\text{c}^2}$
W_e	20 π	$10\pi^2$	$40\pi^2$	40 π	$20\pi^2$	$\frac{\text{CM}}{\text{c}^2}$
W_c	10	0	$10\pi^2$	20 π	$20\pi^2$	$\frac{\text{CM}}{\text{c}^2}$

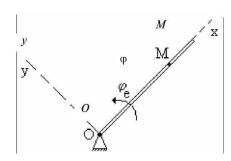
$$OM = S_r = 20 + 5t^2$$
 cm
 $\omega_e = 2 c^{-1}$ (const)

Найти: ϑ_r , ϑ_e , W_r , W_e , W_c (с указанием соответствующих векторов на рисунке)

Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_r	40	5	10	30	25	CM C
ϑ_e	40	10	60	20	100	CM C
W_r	20	10	30	25	90	$\frac{\text{cm}}{\text{c}^2}$
W_e	40	50	200	100	120	$\frac{\text{cm}}{\text{c}^2}$
W_c	85	10	60	80	50	$\frac{\text{cm}}{\text{c}^2}$

17

$$AM = S_r = t^3 + t \text{ cm}$$


$$\omega_e = t^2 \text{ c}^{-1}$$

$$\alpha = 30^\circ$$

$$t = 2 \text{ c}$$

Найти: ϑ_r , ϑ_e , W_r , W_e , W_c (с указанием соответствующих векторов на рисунке)

Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_r	13	6	7	12	21	CM C
ϑ_e	16	18	32	20	17	CM C
W_r	15	26	14	24	12	$\frac{\text{cm}}{\text{c}^2}$
W_e	20 √2	30√5	20√17	25	42√3	$\frac{c_{M}}{c^{2}}$
W_c	52	42	21	14√3	24	$\frac{c_{M}}{c^{2}}$

Вариант 18

$$OM = S_r = 20t + 4t^2 \, \mathrm{cm}$$

$$\varphi_e = \frac{t^2}{2}$$
 рад

t = 1 c

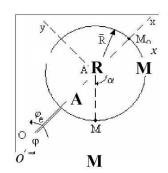
Найти:

 ϑ_r ,

 $\vartheta_e,$

 W_r

.


 W_e ,

 W_c

(с указанием соответствующих векторов на рисунке)

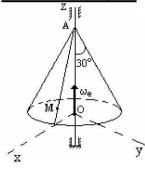
Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_r	20	24	28	24,5	44	CM C
ϑ_e	27	24	22	45,5	48	CM C
W_r	10	25	36	8	28	$\frac{\mathrm{CM}}{\mathrm{c}^2}$
W_e	12	20√3	$\frac{32}{\sqrt{2}}$	$\frac{24}{\sqrt{2}}$	15√3	$\frac{\text{CM}}{\text{c}^2}$

 W_c 56 48 49 40 26 $\frac{\text{cM}}{\text{c}^2}$

19

 $\varphi_e = 0.5t^2$ рад

 $\alpha = \pi t$ рад

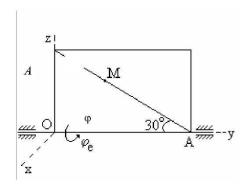

R = 0.2 M

OA = 3 R

t = 1 c

Найти: $\theta_r, \ \theta_e, \ W_r, \ W_e, \ W_c$ (с указанием соответствующих векторов на рисун-

ке)						
Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_r	0,4 π	0,2 π	π	$0,4\pi^2$	$0,2\pi^2$	<u>м</u> с
ϑ_e	0,8	1,2	2,4	0,4	0,2	<u>м</u> с
W_r	$0,4\pi^2$	$0,2\pi^2$	0,8 π	0,4 π	$1,2\pi^2$	$\frac{M}{c^2}$
W_e	2,5√2	2√3	$0,4\sqrt{2}$	0,8	1,2√2	$\frac{M}{c^2}$
W_c	0,4 π	0,8 π	2π	$0.8\pi^2$	1/2 π	$\frac{M}{c^2}$

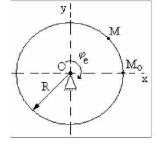


$$S = AM = 20 + 5t^{2}$$
 cm
 $\omega_{e} = 2 \text{ c}^{-1}$ (const)
 $t = 2 \text{ c}$

Найти: ϑ_r , ϑ_e , W_r , W_e , W_c (с указанием соответствующих векторов на рисунке)

Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_r	22	20	30	25	42	CM C
ϑ_e	40	36	60	50	84	CM C
W_r	34	45	40	10	20	$\frac{\text{CM}}{\text{c}^2}$
W_e	90	85	80	40	45	$\frac{\text{CM}}{\text{c}^2}$
W_c	44	60	30√3	20√3	40	$\frac{\text{CM}}{\text{c}^2}$

Вариант 21

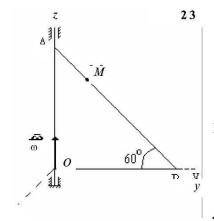


$$AM = S_r = 16 + 4t + 8t^2$$
 см
 $\varphi_e = 2t$ рад
 $t = \frac{1}{2}$ с

Найти: ϑ_r , ϑ_e , W_r , W_e , W_c (с указанием соответствующих векторов на рисунке)

Варианты ответов						TPI KM1
Опре-	1	2	3	4	5	инип
деляемые						Едизм
величины			,			

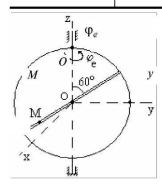
ϑ_r	16	4	20	28	12	CM C
ϑ_e	20	32	8	18	12	CM C
W_r	4	16	8	12	20	$\frac{\text{cm}}{\text{c}^2}$
W_e	32	12	36	40	27	$\frac{c_{M}}{c^{2}}$
W_c	46	24	8	38	52	$\frac{c_{M}}{c^{2}}$



$$M_oM = S_r = \frac{t^2}{2} \text{ cm}$$

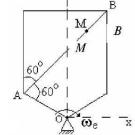
Найти: ϑ_r , ϑ_e , W_r , W_e , W_c (с указанием соответствующих векторов на рисунке)

Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_r	12	2	4	10	6	CM C
ϑ_e	3	9	12	6	18	CM C
W_r	5	8	1	14	9	$\frac{\text{CM}}{\text{c}^2}$
W_e	30	14	23	8	18	$\frac{cM}{c^2}$


W_c	12	24	20	10	26	$\frac{\text{CM}}{\text{c}^2}$
-------	----	----	----	----	----	--------------------------------

$$AM = S_r = 4t^2 - 5t$$
 c M
 $\omega_e = 8 \text{ c}^{-1} \text{ (const)}$

Найти: ϑ_r , ϑ_e , W_r , W_e , W_c (с указанием соответствующих векторов на рисунке)

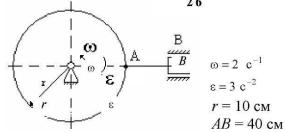

			Ва ответо Опре- деляем величи	иые	1	2	3	4	5	Единицы измерения
$\boldsymbol{\vartheta}_r$	13	12	11	1	9	CM C		•		
ϑ_e	32	24	15	8	36	CM C				
W_r	14	45	12	23	8	CM C ²				
W_e	192	30	154	182	140	$\frac{cM}{c^2}$				
W.Z	26	18	42 √ 3	88	30√3	СМ				

$$OM = S_r = 4t + 2t + 3t^2$$
 см $\phi_e = 2t$ рад

Найти: ϑ_r , ϑ_e , W_r , W_e , W_c (с указанием соответствующих векторов на рисунке)

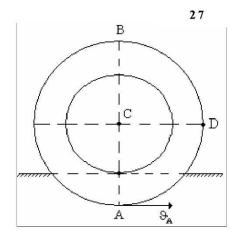
Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_r	6	14	12	18	21	CM C
ϑ_e	10√3	12	24	20√3	30√3	CM C
W_r	16	36	6	10	25	$\frac{\text{CM}}{\text{c}^2}$
W_e	10√3	20	80 √2	40√3	45 √2	$\frac{\mathrm{CM}}{\mathrm{c}^2}$
W_c	28√3	12√3	36	12√3	18	$\frac{\text{CM}}{\text{c}^2}$

25


$$S = AM = 12 \sin \frac{\pi}{6}t - 4 \text{ cM}$$

$$\omega_e = 2 \text{ c}^{-1} \text{ (const)}$$

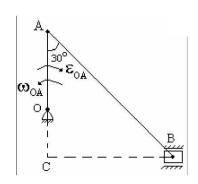
$$AB = 4 \text{ cM}$$


 $_{X}$ Найти: $_{r}$, $_{e}$, $_{r}$, $_{e}$, $_{r}$, $_{r}$, $_{e}$, $_{r}$ (с указанием соответствующих векторов на рисунке)

Варианты ответов Опре-	1	2	3	4	5	Единицы измерения
величины ϑ_r	π	π√3	2√2	√ 3	4	CM C
ϑ_e	8	2√3	4	2	16	CM C
W_r	$3 \pi^2$	π√3	0	π^2	$\frac{\pi^2}{6}$	$\frac{cM}{c^2}$
W_e	4	π^2	8	2 π	16	$\frac{\text{CM}}{\text{c}^2}$
W_c	4 π√3	2 π	16	8 π√3	$2\pi^2$	$\frac{\text{CM}}{\text{c}^2}$

Найти: ω_{AB} , ε_{AB} , W_A , W_B (с указанием направления на рисунке)

Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ω_{AB}	1	1,5	20	3	0,5	c^{-1}
E AB	5	2	3	$\frac{3}{4}$	5	c^{-2}
W_A	50	70	40	30	35	$\frac{\text{cm}}{\text{c}^2}$
W_B	30	50	25	40	70	$\frac{c_{M}}{c^{2}}$

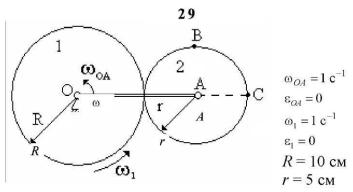

$$\theta_A = 20 \frac{\text{cM}}{\text{c}}$$

$$R = 20 \text{ cm}$$

$$r = 15 \text{ cm}$$

 $\vartheta_A = 20 \, \frac{\text{см}}{\text{c}}$ $R = 20 \, \text{см}$ $r = 15 \, \text{см}$ **Найти:** ω , ϑ_C , ϑ_B , ϑ_D (с указанием направления на рисунке)

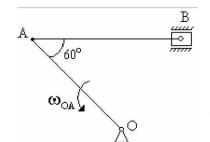
Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ω	1,5	4	1	5	8	c^{-1}
ϑ_C	40	22,5	15	60	20	CM C
ϑ_B	30	60	140	100	210	CM C
ϑ_D	100	40	40 √2	120	60	CM C


$$\omega_{OA} = 1 c^{-1}$$

$$\varepsilon_{OA} = \sqrt{3} c^{-2}$$

OA = 10 cmOC = 10 cm

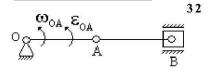
Найти: ϑ_{B} , ϖ_{AB} , ε_{AB} , W_{B} (с указанием направления на рисунке)


Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_B	20	10	12	10√3	25	CM C
ω_{AB}	1	10	0	0,5	2	c ⁻¹
$oldsymbol{arepsilon}_{AB}$	0	1	3	1,5	$\frac{\sqrt{3}}{2}$	c^{-2}
W_B	$\frac{10}{\sqrt{2}}$	20√3	40	10√3	30	$\frac{\text{CM}}{\text{c}^2}$

Найти: $\vartheta_B, \ \omega \ \omega_1^{-\beta}, \ W_C$ (с указанием направления на рисунке)

Варианты ответов Опре- деляемые величины	1.	2	3	4	.5	Единицы измерения
ϑ_B	20	10√13	10√5	30	$\frac{20}{\sqrt{2}}$	CM C
ω_2	2	1	4	3	1,5	c^{-1}
W_B	20	100 √2	50	100	60	$\frac{\mathrm{cM}}{\mathrm{c}^2}$
W_c	140	120	66	75	150	$\frac{\mathrm{cm}}{\mathrm{c}^2}$

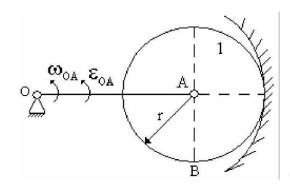
A **вариант 30**


$$\omega_{OA} = 1 \text{ c}^{-1}$$
 $\varepsilon_{OA} = 0$
 $OA = 10 \text{ cm}$
 $AB = 15 \text{ cm}$

Найти: $\vartheta_B,\,\omega_{AB},\,\,\varepsilon_{AB},\,W_B$ (с указанием направления на рисунке)

Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_B	10	5 √3	15	10√3	25	CM C
ω_{AB}	1	5	$\frac{1}{3}$	8	4	c ⁻¹
ε _{AB}	0	2	$\sqrt{2}$	3	$\frac{\sqrt{3}}{3}$	c^{-2}
W_B	$\frac{10}{3}$	20	20,5	16	25	$\frac{c_{M}}{c^{2}}$

Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_B	4	5	2,5	8	12	CM C
ω	1	2	4	1,5	0,2	\mathbf{c}^{-1}
ε	0	0,5	1	2	3	c ⁻²
W_B	15	7,5	0,5 √61	16	22	$\frac{cM}{c^2}$

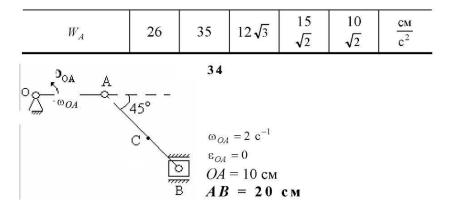


$$ω_{OA} = 2 c^{-1}$$
 $ε_{OA} = 1 c^{-2}$
 $OA = 10 cm$

AB = 20 cm

Найти: $\vartheta_{B},\ \omega_{AB},\ \epsilon_{AB},\ W_{B}$ (с указанием направления на рисунке)

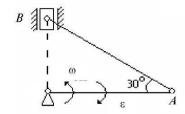
Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_B	20	0	10	5	32	СМС
ω_{AB}	2	4,5	1	3	5	c^{-1}
ε _{AB}	0,2	2	1	0,5	3	c^{-2}
W_B	60	20	100	50	75	$\frac{c_{M}}{c^{2}}$


 $\omega_{OA} = 1 c^{-1}$ $\varepsilon_{OA} = 1 \text{ c}^{-2}$ OA = 15 cmr = 10 cm

Найти:

 ϑ_B , ω_1 , (с указанием направления на рисунке) W_A

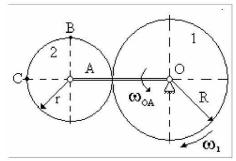
 ϵ_1 ,


Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ω_1	1	1,5	0	3	4,5	c^{-1}
ϑ_B	20	25	$\frac{15}{\sqrt{2}}$	10 √2	15	<u>см</u> с
ϵ_1	1,5	0,5	3	1	2,5	c^{-2}

AC = CB

Найти: $\vartheta_B,\ \vartheta_C, \omega_{AB}, \, \epsilon_{AB}$ (с указанием направления на рисунке)

Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_B	$\frac{20}{\sqrt{2}}$	20	10	30	40	CM C
$\vartheta_{\scriptscriptstyle C}$	10 √2	20	15	10	5	CM C
ω_{AB}	2	1	2,5	0	$\sqrt{2}$	c ⁻¹
$oldsymbol{arepsilon}_{ ext{AB}}$	1	3,5	1,5	4	2	c^{-2}



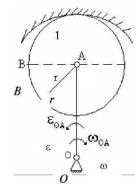
35

$$\omega_{OA} = 2 \text{ c}^{-1}$$
 $\epsilon_{OA} = 3 \text{ c}^{-2}$
 $OA = 10 \text{ cm}$

Найти: $\vartheta_{B},\ \omega_{AB},\ \epsilon_{AB},\ W_{A}$ (с указанием направления на рисунке)

Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_B	10	20	40	20,5	24	CM C
ω_{AB}	1	3,5	0	2	0,5	c^{-1}
$oldsymbol{arepsilon}_{AB}$	2	4 √ 3	1	2√3	3	c^{-2}
W_A	110	60	72	80	50	CM c ²

 $\omega_{OA} = \frac{1}{3} c^{-1}$ $\varepsilon_{OA} = 0$ $\omega_1 = 1 c^{-1}$ $\varepsilon_1 = 0$

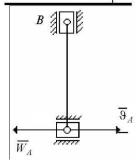

R = 10 cm

r = 5 cm

Найти: ω_2 , ϑ_B , ϑ_C , W_C

(с указанием направления на рисунке)

Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ω_2	1	3	4,5	0	2	\mathbf{c}^{-1}
ϑ_B	10	5√2	5 √ 10	23,5	44	CM C
$\theta_{\mathcal{C}}$	20	10	30	25	40	CM C
W_C	120	70	90,5	123,4	$\frac{140}{3}$	$\frac{\text{CM}}{\text{c}^2}$

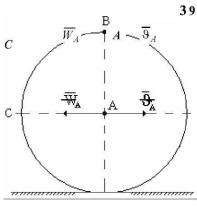

 $ω_{OA} = 2 c^{-1}$ $ε_{OA} = 4 c^{-2}$ OA = 20 cm

r = 10 cm

Найти: θ_B , ω_1 , ϵ_1 , W_B (с указанием направления на рисунке)

Варианты						
ответов						1451
Опре-	1	2	3	4	5	инии
деляемые						Еди
величины						

ϑ_B	40 √2	$\frac{20}{\sqrt{2}}$	40	60	52	СМС
ω_1	1	0	4	2	3,5	c^{-1}
ϵ_1	4	8	2	6,5	3	c^{-2}
W_A	120	110	75	60	80	$\frac{c_{M}}{c^{2}}$


38

$$W_A = 5 \frac{\text{CM}}{\text{c}^2}$$

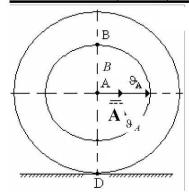
$$AB = 20 \text{ cm}$$

Найти: $\vartheta_B,\ \omega_{AB},\ \epsilon_{AB},\ W_B$ (с указанием направления на рисунке)

Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_B	10	5	0	20	15	CM C
ω_{AB}	0,5	1	3	1,5	4	c^{-1}
ε _{AB} Β _	1	0,25	0,3	0,75	1,5	c^{-2}
W_B	10	25	12	5	15	$\frac{cM}{c^2}$

$$\vartheta_A = 25 \frac{\text{cM}}{\text{c}}$$

$$W_A = 50 \frac{\text{cM}}{\text{c}^2}$$


$$R = 50 \text{ cm}$$

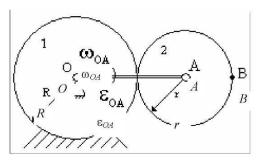
$$R = 50 \text{ cm}$$

Найти: ε , ϑ_B , ϑ_C , W_C (с указанием направления на рисунке)

unnunun -		(Вар ответов Опре- целяемы величин		1	2	3	4	5	Единицы измерения
ε	3	0,5	4	1	3,5	c^{-2}				

ϑ_B	75	12,5	50	100	25	CM C
$\vartheta_{\scriptscriptstyle C}$	$\frac{25}{\sqrt{2}}$	12,5	10	20	50 √2	CM C
W_C	60	62,5	30	59	120	$\frac{\text{CM}}{\text{c}^2}$

$$\theta_A = 10 \frac{\text{cm}}{\text{c}}$$


$$W_A = 4 \frac{\text{CM}}{\text{c}^2}$$

$$R = 20$$
 cm

$$r = 15 \text{ cm}$$

Найти: ω , ε , $\vartheta_{\scriptscriptstyle B}$, $W_{\scriptscriptstyle D}$ (с указанием направления на рисунке)

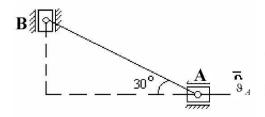
Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ω	1	0,5	1,5	2	1,6	c^{-1}
3	1	0,5	0,2	2,5	3	c^{-2}
ϑ_B	35	17,5	20	8	40	СМС
W_D	0	10	25	15	5	$\frac{\text{CM}}{\text{c}^2}$

$$\omega_{OA} = 1 \text{ c}^{-1}$$

$$\varepsilon_{OA} = 1 \text{ c}^{-2}$$

$$R = 2 \text{ cm}$$

$$\varepsilon_{OA} = 1 c^{-2}$$

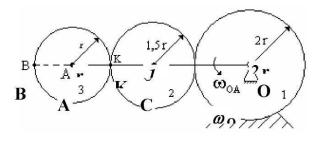

$$R = 2$$
 cm

Найти: $\vartheta_B, \ \omega_2, \ \epsilon_2, \ W_B$ (с указанием направления на рисунке)

Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_B	10	6	12	36	30	CM C

ω ₂	3	1	1,5	6	0	\mathbf{c}^{-1}
ϵ_2	1,5	6	4,5	8	3	c^{-2}
W_B	30 √2	6√5	12	16	14	$\frac{c_{M}}{c^{2}}$

Вариант 42

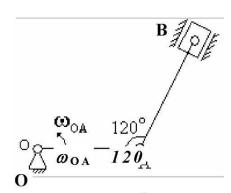

$$\theta_A = 20 \frac{\text{см}}{\text{с}}$$
 $AB = 10 \text{ см}$
Найти:

Найти: ϑ_B , $ω_{AB}$, (с указанием направления на рисунке)

 $arepsilon_{AB}, W_B$

Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_B	20	20√3	10√5	30	40 √3	CM C
Ω_{AB}	1	2	4	0	5	c^{-1}
$\mathbf{\epsilon}_{AB}$	15	2	5 √3	20	16 √ 3	c^{-2}
W_B	320	120	350	640	160	$\frac{cM}{c^2}$

Вариант 43

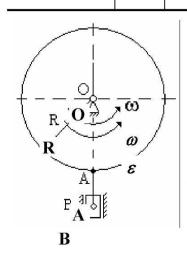


 $\omega_{OA} = 2 c^{-1}$ r = 5 cm

Найти: ω_2 , ω_3 , ϑ_K , ϑ_B (с указанием направления на рисунке)

Варианты ответов Опре- 1 2 3 4 5 Ининиты деляемые величины

ω ₂	3	1,5	$\frac{14}{3}$	2,5	0,5	c^{-1}
ω_3	1	2	3	2,5	3,6	\mathbf{c}^{-1}
ϑ_K	70	35	140	120	60	СМС
ϑ_B	25	100	50	150	75	СМС


 $\omega_{\mathit{OA}} = 1 \ e^{-1}$

 $\varepsilon_{OA} = 0$ OA = 10 cm

AB = 15 cm

Найти: θ_B , ω_{AB} , ϵ_{AB} , W_B (с указанием направления на рисунке)

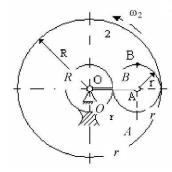
	A					
Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_B	$\frac{10}{\sqrt{2}}$	5 √3	10	15,5	25	CM C
ω_{AB}	0,5	1	0	$\frac{1}{3}$	3	c^{-1}
$oldsymbol{arepsilon}_{AB}$	2			$2\sqrt{2}$	5	c^{-2}
W_B	18	9	15	20	18	<u>CM</u> _2

 $\omega = 2 c^{-1}$

 $\epsilon = 1 \ c^{-2}$

R = 10 cm

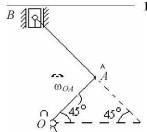
AB = 25 cm


Найти: ϑ_{B} , ω_{AB} , ϵ_{AB} , W_{B} (с указанием направления на рисунке)

	1770 10 00	TO 100 0	CONTROL OF	SS 128 - 1961				
ОТЕ	Варианть ветов	1						цы
Оп	pe-		1	2	3	4	5	Едини змере
дел	іяемые							Ед
вел	іичины							-

 ϑ_B 10 20 0

ω_{AB}	1	0,8	2	2,5	1,2	c^{-1}
$\mathbf{\epsilon}_{AB}$	0,4	0,6	1	1,8	0,8	c ⁻²
W_{B}	60	80	72	56	114	$\frac{\text{CM}}{\text{c}^2}$


Вариант 46

$$\omega_2 = 2 \text{ c}^{-1}$$

 $R = 15 \text{ cm}$
 $r = 5 \text{ cm}$

Найти: ω_1 , ϑ_B , ω_{OA} , W_A (с указанием направления на рисунке)

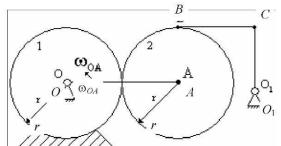
Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ω_1	1	3	5	10	3,5	\mathbf{c}^{-1}
ϑ_B	20√3	10 √2	15 √2	20,5	40	СМС
ω_{OA}	0,5	3	4	3,6	1,5	c^{-1}
W_A	15	80	60	75	100	$\frac{cM}{c^2}$

Вариант 47

$$\omega_{OA} = 2 e^{-1}$$

$$\varepsilon_{OA} = 0$$

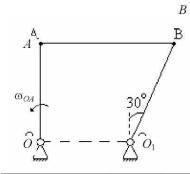
$$OA = 5$$
 cm


$$AR = 10 \text{ cm}$$

 $\varepsilon_{OA} = 0$ OA = 5 см AB = 10 см **Найти:** ϑ_B , ω_{AB} , ε_{AB} , W_B (с указанием направления на рисунке)

Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_B	15,6	20	$\frac{10}{\sqrt{2}}$	42	20 √2	CM C
ω_{AB}	1	2	3,5	1,8	4,2	c^{-1}

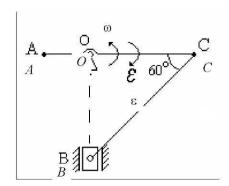
$oldsymbol{arepsilon}_{AB}$	0	2,5	7,2	1	2	c^{-2}
W_B	12	25	48	15 √2	10 √2	$\frac{c_{M}}{c^{2}}$


Вапиант

Найти: ω_2 , ϑ_B , ω_{BC} , ϑ_C (с указанием направления на рисунке)

Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ω_2	1	2	4	2,5	4,2	c^{-1}
$oldsymbol{artheta}_B$	15 √2	22	17	10 √2	28	CM C
ω_{BC}	1	2	1,5	3	0,5	c^{-1}
$\vartheta_{\mathcal{C}}$	20	40	10	10 √2	15	CM C

Вапиант


 $\omega_{OA} = 2 \text{ c}^{-1}$ $\epsilon_{OA} = 0$ OA = 20 cm AB = 30 cm

Найти: 9_B , ω_{AB} , W_A , ω_{O_1B} (с указанием направления на рисунке)

Варианты ответов Опре- деляемые величины	1	2	3	4	5	Единицы измерения
ϑ_B	42	15	$\frac{80}{\sqrt{3}}$	40	80	CM C

ω_{AB}	2	3 √2	1,5	$\frac{4}{3\sqrt{3}}$	$\frac{1}{3}$	\mathbf{c}^{-1}
W_A	40	82	120	140	80	$\frac{c_{M}}{c^{2}}$
ω_{O_1B}	2	$\frac{3}{2}$	0,5	7	2,3	c^{-1}

Вариант 50

$$ω = 2 c^{-1}$$
 $ε = \sqrt{3} c^{-2}$
 $OA = OC = 15 cm$

Найти: ϑ_{B} , ϖ_{BC} , W_{B} , ε_{BC} (с указанием направления на рисунке)

Варианты ответов Опре- деляемые величины	1.	2	3	4	5	Единицы измерения
ϑ_B	30	20	35	60	73	CM C
ω_{BC}	2	1,5	3	0	0,5	c^{-1}
W_B	10	5 √3	20	10√3	35	$\frac{c_{M}}{c^{2}}$
$oldsymbol{arepsilon}_{BC}$	2	$\frac{4}{\sqrt{3}}$	1,5	1	0,5	c^{-2}