ЕН.Ф.06 ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ОПРЕДЕЛЕНИЕ СКОРОСТИ И УСКОРЕНИЯ ТОЧКИ ПО ЗАДАННОМУ ЗАКОНУ ДВИЖЕНИЯ С ПРИМЕНЕНИЕМ СИСТЕМЫ МАТНСАD

Методические указания к выполнению расчетно-графической работы с заданиями

Методические указания предназначены для выполнения расчетнографической работы по дисциплине «Теоретическая механика» для студентов специальностей 150200, 230100.

Введение

В настоящее время произошло широкое внедрение компьютеров во все сферы жизнедеятельности человека. Студенты, как будущие специалисты, обязаны готовить себя к работе с компьютерной техникой. Наличие у студентов знаний о возможностях современной компьютерной техники, разработанного программного обеспечения, а также получение необходимых умений и навыков по внедрению этих знаний в практическую деятельность является необходимым для дальнейшей учебы и последующей работы по специальности.

Важнейшим преимуществом применения компьютерных технологий при решении задач теоретической механики является возможность решать не только упрощенные схематические задачи, но и задачи более сложные, близкие к реальным запросам техники. Это связано с тем, что применение более точных моделей, описывающих реальные механизмы и физические явления, приводит к усложнению математического аппарата, применяемого для решения задач. Без применения компьютерных программ такие задачи часто решаются весьма приближенно, а то и вовсе остаются нерешенными.

Выявленные математические трудности можно преодолеть, используя разработанные системы компьютерной математики, предназначенные для автоматизации решения массовых математических задач в самых разных областях науки, техники и образования. На данный момент наиболее разработанными и широко используемыми компьютерными математическими системами являются Mathcad и Maple.

Использование системы Mathcad при решении задач теоретической механики обосновано наличием дружественного интерфейса, привычной записью математических формул, относительной легкостью и понятностью выполняемых операций. Различные версии Mathcad являются математически ориентированными универсальными системами. Помимо собственно вычислений, как численных, так и аналитических, они позволяют решать сложные оформительские задачи. С помощью Mathcad можно готовить статьи, диссертации, научные отчеты, дипломные, расчетно-графические, курсовые проекты и работы не только с качественными текстами, но и с легко осуществляемым набором самых сложных математических формул, графическим представлением результатов вычислений и анимационными примерами. Наличие библиотек и пакетов расширения обеспечивает профессиональную ориентацию Mathcad на любую область науки, техники и образования.

Таким образом, применение компьютерных технологий, в частности системы Mathcad, при решение задач теоретической механики позволит свести к минимуму возникающие математические трудности, повысить иллюстративность получаемых результатов, переложить на машину трудоемкую и малоинтересную вычислительную работу, определить новые актуальные направления учебно-исследовательской работы студентов.

1 Общие сведения

В кинематике изучается движение тел без учета их массы и действующих на них сил. Во многих задачах можно пренебречь размерами тела и рассматривать его как материальную точку.

В кинематике точки рассматривают две основные задачи:

- 1) установление математических способов задания движения точки относительно выбранной системы отсчета (т.е. способов определения положения точки в пространстве) или установление закона движения точки (определение уравнений движения);
- 2) определение по заданному закону движения всех кинематических характеристик этого движения (траектории, скорости и ускорения точки).

1.1 Первая основная задача кинематики точки

Движение точки считается заданным, если указан способ, позволяющий определить ее положение относительно выбранной системы отсчета в каждый момент времени. Существуют три способа задания движения точки: координатный, векторный и естественный.

При векторном способе задания движения положение точки относительно фиксированной точки O будет полностью определено, если в каждый момент времени будут известны модуль и направление ее радиуса-вектора относительно точки O (рисунок 1). Таким образом, закон движения точки в векторной форме будет иметь вид:

$$\overline{r} = \overline{\varphi}(t),$$
 (1)

где \overline{r} - радиус-вектор точки.

При координатном способе задания движения положение точки в произвольный момент времени t считается известным, если известны ее координаты (например, декартовы - x, y, z)(рисунок 1). Чтобы знать закон движения точки, необходимо знать значения координат точки для каждого момента времени, т.е. знать зависимости:

$$\begin{cases} x = f_1(t), \\ y = f_2(t), \\ z = f_3(t). \end{cases}$$
 (2)

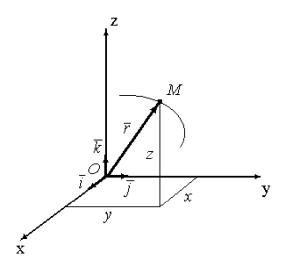


Рисунок 1

При естественном способе задания движения положение точки в пространстве будет определено, если известна ее траектория и положение точки на траектории в каждый момент времени. Положение точки на траектории можно определить с помощью криволинейной (дуговой) координаты S, отсчитываемой от произвольно выбранного начала O (рисунок 2). Для этого надо задать точку O, выбрать положительное и отрицательное направление отсчета координаты S и установить закон ее изменения с течением времени:

$$S = f(t). (3)$$

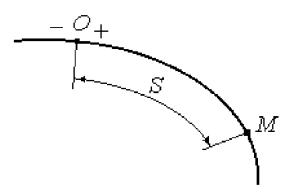


Рисунок 2

1.2 Вторая основная задача кинематики точки

1.2.1 Определение скорости точки

При векторном способе задания движения скоростью точки называется кинематическая мера движения точки, равная производной по времени от радиуса-вектора этой точки:

$$\overline{v} = \frac{d\overline{r}}{dt} = \overline{R},\tag{4}$$

где v - скорость точки, м/с.

Скорость точки характеризует быстроту и направление изменения положения точки в пространстве. Скорость является векторной величиной.

Вектор скорости направлен по касательной к траектории точки в сторону движения (рисунок 3).

При координатном способе задания движения скорость точки определяется через ее проекции на оси координат. Так как $\bar{r} = x \cdot \bar{i} + y \cdot \bar{j} + z \cdot \bar{k}$, то из формулы (4) получим:

$$\overline{v} = v_x \cdot \overline{i} + v_y \cdot \overline{j} + v_z \cdot \overline{k}, \tag{5}$$

$$\begin{cases} v_x = x \\ v_y = y \\ v_z = x \end{cases}$$

$$(6)$$

где $\bar{i}, \bar{j}, \bar{k}$ - орты соответствующих осей;

 v_x, v_y, v_z - проекции вектора скорости на оси координат, м/с.

Модуль вектора скорости находится по формуле:

$$v = \sqrt{v_x^2 + v_y^2 + v_z^2}. (7)$$

Направление вектора скорости определяется направляющими косинусами (косинусами углов наклона вектора к осям координат):

$$\begin{cases}
\cos(\overline{v}, \overline{i}) = v_x / v, \\
\cos(\overline{v}, \overline{j}) = v_y / v, \\
\cos(\overline{v}, \overline{k}) = v_z / v.
\end{cases}$$
(8)

При естественном способе задания движения скорость находится по следующей формуле:

$$\overline{v} = v_{\tau} \cdot \overline{\tau} = \mathcal{S} \overline{\tau}, \tag{9}$$

где $\overline{\tau}$ - единичный вектор касательной, направленный в сторону возрастания S_{\star}

 v_{τ} - алгебраическая скорость (проекция вектора скорости на направление вектора $\overline{\tau}$ в данной точке), м/с.

Знак алгебраической скорости показывает направление движения точки: если $v_{\tau}>0$, то точка движется в сторону возрастания дуговой координаты S, если $v_{\tau}<0$, то точка движется в сторону уменьшения координаты S. Модуль вектора скорости точки равен модулю ее алгебраической скорости.

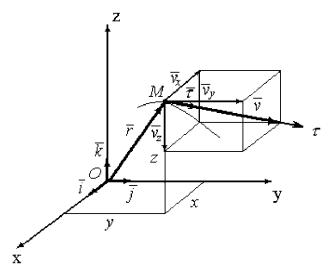


Рисунок 3

1.2.2 Определение ускорения точки

При векторном способе задания движения ускорение точки — это мера изменения скорости точки, равная производной по времени от скорости этой точки в рассматриваемой системе отсчета:

$$\overline{a} = \frac{d\overline{v}}{dt} = \frac{d^2\overline{r}}{dt},\tag{10}$$

где a - ускорение точки, м/ c^2 .

Ускорение точки – это векторная величина, характеризующая, как быстро и в каком направлении меняется скорость точки.

При координатном способе задания движения ускорение находится аналогично скорости (рисунок 4), т.е. через его проекции на оси координат (формулы (11), (12)). Модуль и направление вектора ускорения можно определить по формулам (13),(14).

$$\overline{a} = a_x \cdot \overline{i} + a_y \cdot \overline{j} + a_z \cdot \overline{k}, \tag{11}$$

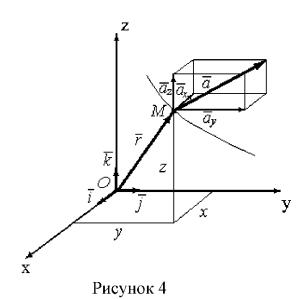
$$\begin{cases} a_x = x = x \\ a_y = x = x \\ a_z = x = x \end{cases}$$

$$(12)$$

$$a = \sqrt{a_x^2 + a_y^2 + a_z^2},\tag{13}$$

$$\begin{cases}
\cos(\overline{a}, \overline{i}) = a_x / a, \\
\cos(\overline{a}, \overline{j}) = a_y / a, \\
\cos(\overline{a}, \overline{k}) = a_z / a,
\end{cases}$$
(14)

где a_x, a_y, a_z - проекции вектора ускорения на оси координат, м/с².



При естественном способе задания движения ускорение определяется как сумма его касательной \overline{a}_{τ} (тангенциальной) и нормальной \overline{a}_{n} составляющих (рисунок 5):

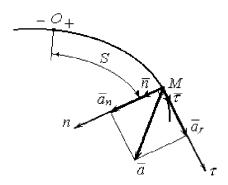


Рисунок 5

Модуль ускорения равен:

$$a = \sqrt{a_r^2 + a_n^2}. ag{16}$$

Касательное ускорение определяется по формуле (17), а его проекция на вектор $\overline{\tau}$ – по формуле (18).

$$\overline{a}_r = \Re \overline{\tau} = \Re \overline{\tau},\tag{17}$$

$$a_{\tau} = 8 \times 10^{10}$$

Нормальное ускорение определяется по формуле (19), а его модуль – по формуле (20). Нормальное ускорение всегда направлено к центру кривизны траектории точки.

$$\overline{a}_n = \frac{\mathfrak{R}}{\rho} \cdot \overline{n} = \frac{v^2}{\rho} \cdot \overline{n},\tag{19}$$

$$a_n = \frac{\Re}{\rho} = \frac{v^2}{\rho},\tag{20}$$

где \overline{n} - орт главной нормали,

ho - радиус кривизны траектории в данной точке, м.

2 Содержание задания и алгоритм решения

2.1 Содержание задания

Точка M движется в пространстве согласно уравнениям (1). Уравнения движения представлены в таблице 1 и определяются согласно варианту работы.

Номер варианта представлен в виде трехзначного числа. Первая цифра варианта соответствует уравнению $x = f_1(t)$, вторая - $y = f_2(t)$, третья - $z = f_3(t)$, где x, y, z – в метрах, t – в секундах.

Таблица 1 – Уравнения движения

Ц	0	1	2	3	4
ифра					
Урав-	t^5	$\sin(t^3-1)$. 1	$e^t + \ln(t+0,2)$	$\sin^2(t-e^t)$
нение	$\left \frac{t}{11} - (t+1)^t \right $	($\cos(\frac{t+2}{t+2})+t$	(,)	
	11		<i>i</i> + <i>Z</i>		
Цифра	5	6	7	Q.	Q
		U	,		,
Урав-	$\cos^{-2}(\sin(t))$	$t^3 + t/(1+t^4)$	$\cos(t^5)$	$\sin(t/3) - t^2$	$(t+0.5)^{\cos(2t)}$
нение	, i		·		

Пример – Вариант № 258. Задаваемый закон движения имеет вид:

$$\begin{cases} x = \cos(\frac{1}{t+2}) + t, \\ y = \cos^{-2}(\sin(t)), \\ z = \sin(t/3) - t^{2}. \end{cases}$$

Необходимо:

1) изобразить траекторию движения точки, указать начальное положение точки и положение точки в момент времени t_1 , с (значения t_1 представлены в таблице 2 и определяются по последней цифре варианта);

Таблица 2 — Значение времени t_1

Цифра	0	1	2	3	4
t_I	1,5	5	2,5	3	2
Цифра	5	6	7	8	9
t_I	3,5	4	6	3,5	1

- 2) для момента времени t_1 определить скорость, ускорение, касательное и нормальное ускорения точки, а также радиус кривизны траектории в данной точке;
- 3) построить графики изменения скорости, ускорения, касательног нормального ускорений точки в промежутке времени от начала дви ния до момента времени t_I ;
- 4) создать анимационный файл движения точки.

2.2 Алгоритм решения

- 2.2.1 По формуле (6) определить проекции скорости на оси координат для значения времени t_1 . Определить модуль вектора скорости (формула (7)).
- 2.2.2 По формуле (12) определить проекции ускорения на оси координат для значения времени t_l . Определить модуль вектора ускорения (формула (13)).
 - 2.2.3 Найти касательное ускорение точки по формуле:

$$\left| a_{\tau} \right| = \frac{\left| v_x \cdot a_x + v_y \cdot a_y + v_z \cdot a_z \right|}{v}.$$
 (21)

2.2.4 Определить нормальное ускорение точки по формуле:

$$a_n = \sqrt{a^2 - a_\tau^2}. (22)$$

2.2.5 Найти радиус кривизны траектории в точке:

$$\rho = \frac{v^2}{a_n}.\tag{23}$$

- 2.2.6 Построить траекторию движения точки. Показать положение точки на траектории, вектора скорости и ускорения точки и их составляющие, вектора касательного и нормального ускорений точки в момент времени t_I .
- 2.2.7 Построить графики изменения скорости, ускорения, касательного и нормального ускорений точки в промежутке времени с момента начала движения до момента времени t_1 .
- 2.2.8 Создать анимационный файл движения точки в рассматриваемый промежуток времени с помощью переменной FRAME.

3 Пример выполнения задания

12

Дано:

Точка M движется в пространстве согласно уравнениям:

$$\begin{cases} x = e^{t} \cdot t^{2} - 2, \\ y = \sin(t) + t^{2} - 2, \\ z = 5(\cos(t) - 1), \end{cases}$$

где x, y, z — в метрах, t — в секундах.

Необходимо:

- 1) изобразить траекторию движения точки, указать начальное положение точки и положение точки в момент времени t_l ;
- 2) для момента времени t_1 определить скорость, ускорение, касательное и нормальное ускорения точки, а также радиус кривизны траектории в данной точке;
- 3) построить графики изменения скорости, ускорения, касательного и нормального ускорений точки в промежутке времени с момента начала движения до момента времени t_I ;
- 4) создать анимационный файл движения точки.

Решение:

Решение и оформление работы выполняется в документе Mathcad 2000 или Mathcad 2001. Перед началом выполнения работы необходимо запустить программу Mathcad и открыть новый документ (рисунок 6):

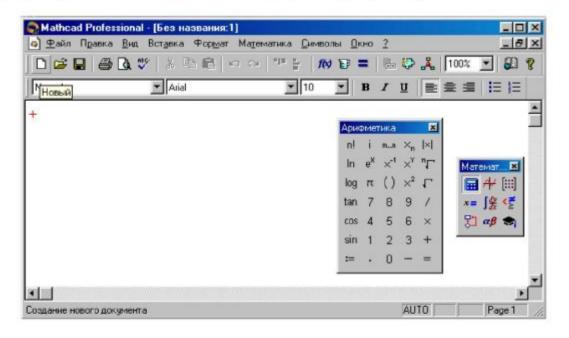


Рисунок 6

При наборе теста и формул необходимо использовать шрифт Times New Roman Cyr обычный, размер 14 пт. Для появления области введения текста необходимо нажать знак двойной кавычки " на английском регистре или выбрать в меню Вставка команду Текстовая область (рисунок 7).

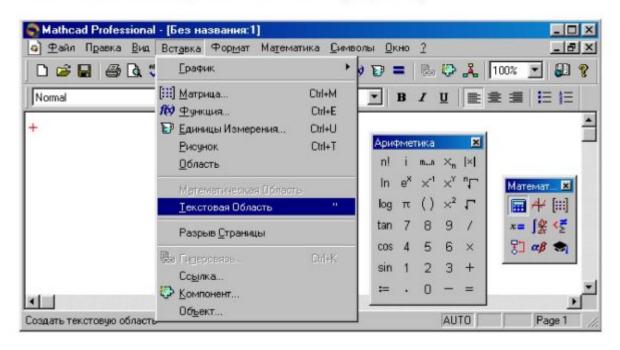


Рисунок 7

Для запуска формульного редактора достаточно установить указатель мыши в любом свободном месте окна редактирования и щелкнуть левой кнопкой мыши. Курсор ввода в виде маленького красного крестика окажется перенесенным на это место. Курсор ввода указывает место, с которого начинается набор формулы. Набор формул осуществляется на английском языке.

Необходимые математические символы, знаки и буквы греческого алфавита находятся в меню Вид под командой Панели инструментов (рисунок 8).

Введем заданные уравнения движения, начальный t_0 и заданный t_1 моменты времени (рисунок 9). В Mathcad знаки равенства (=) и присваивания(:=) имеют различные функции. Знак присваивания используется для присваивания функциям и переменным определенных значений или зависимостей, а знак равенства – для вывода полученных результатов.

Решаем задачу по алгоритму.

- 1 Определим скорость точки (рисунок 10).
- 2 Определим ускорение точки (рисунок 11).
- 3 Определим тангенциальное ускорение точки (рисунок 12).
- 4 Определим нормальное ускорение точки (рисунок 12)
- 5 Определим радиус кривизны траектории в точке (рисунок 13).
- 6 Построим траекторию точки, покажем положение точки на траектории, составляющие векторов скорости и ускорения точки, вектора скорости и

ускорения точки, вектора касательного и нормального ускорений точки в момент времени t_l с помощью трехмерных графиков.

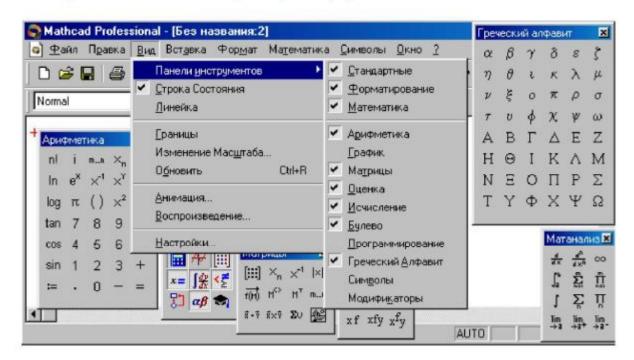


Рисунок 8

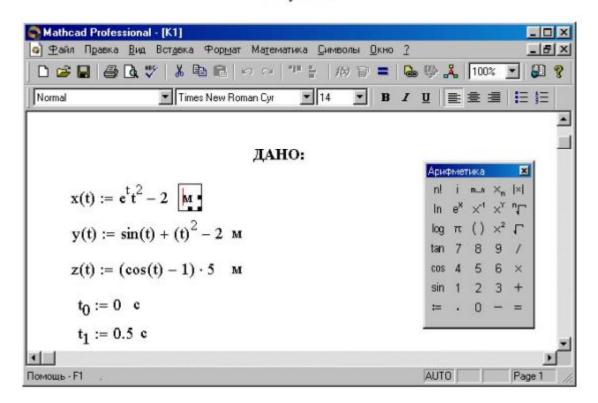


Рисунок 9

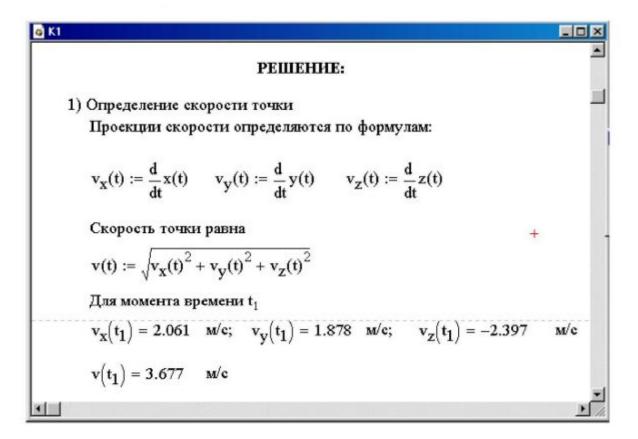


Рисунок 10

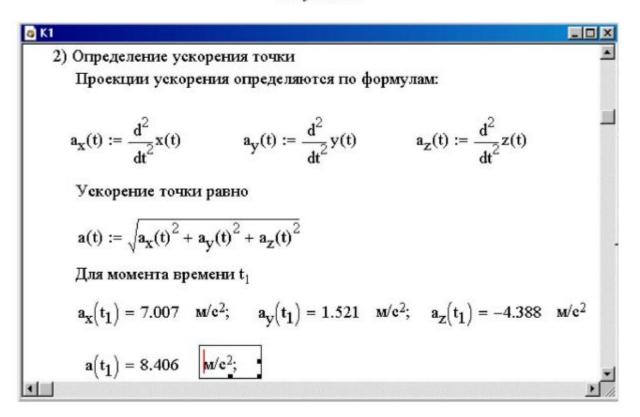


Рисунок 11

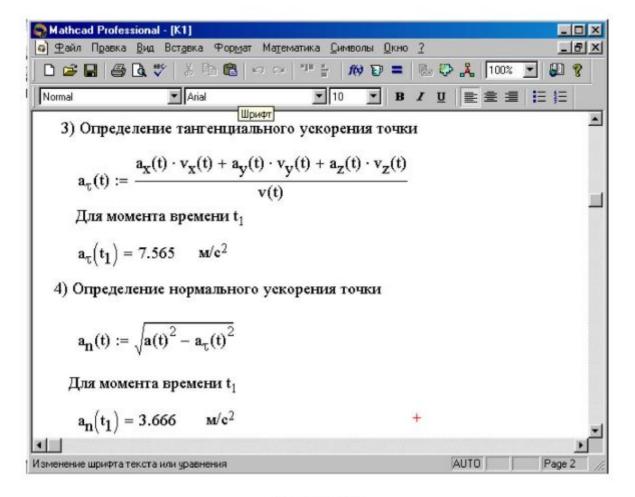


Рисунок 12

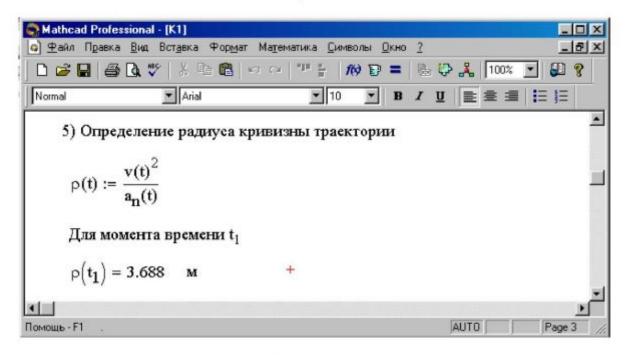


Рисунок 13

Для построения траектории движения точки и определения положения точки в момент времени t_1 необходимо задать матрицу координат точки M, количество точек в интервале построения tgrid и графическую функцию CreatSpace (рисунок 14).

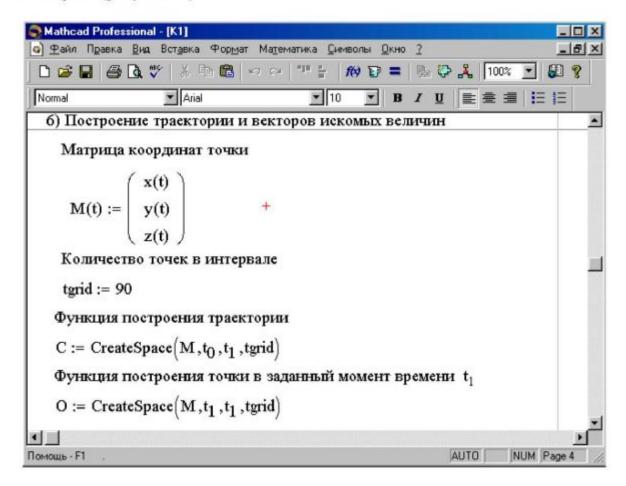


Рисунок 14

Построение векторов скорости и ускорений, а также их составляющих проводятся аналогично. На рисунке 15 представлены матрицы координат точек вектора скорости и составляющих вектора скорости, на рисунке 16 - матрицы координат точек вектора ускорения и составляющих вектора ускорения, на рисунке 17 - матрицы координат точек векторов тангенциального и нормального ускорений.

Для появления шаблона трехмерного графика выберем в меню Вставка команду Графики. В нашем случае необходимо использовать 3D Точечный шаблон (рисунок 18). После появления шаблона графика необходимо ввести полученные графические функции. Названия функций печатаются в месте ввода данных (темный маленький прямоугольник внизу шаблона) через запятую.

Полученные графики представлены на рисунках 19 и 20.

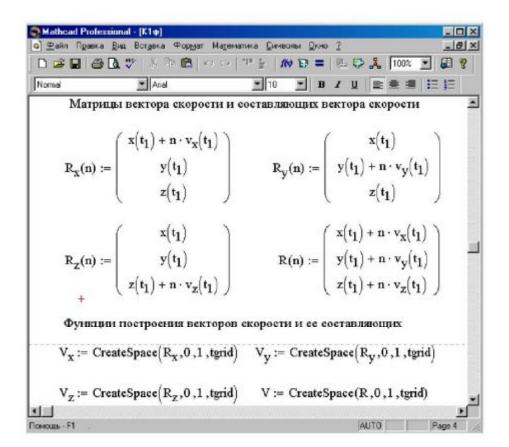


Рисунок 15

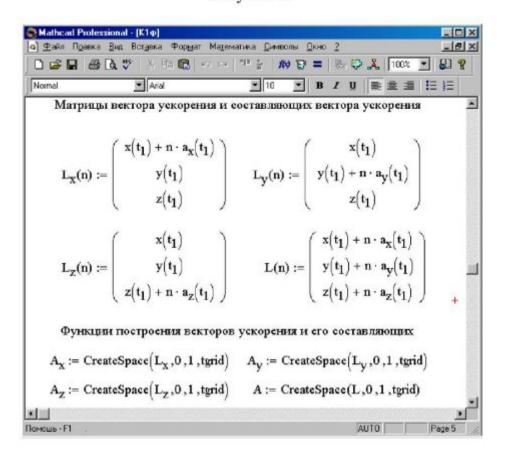


Рисунок 16

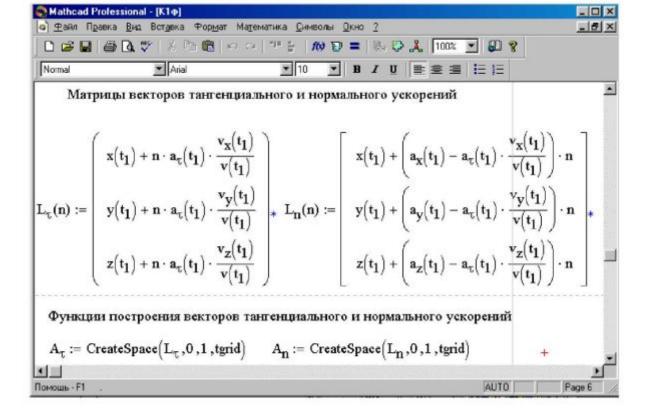


Рисунок 17

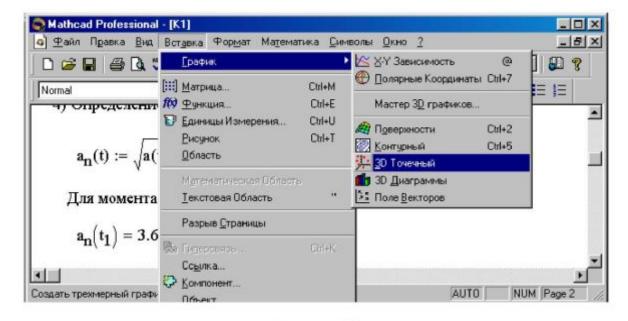


Рисунок 18

Для получения наиболее полной картины о форме траектории точки, направлениях и величинах изображенных векторов возможно изменение углов обзора графика. Для этого необходимо навести курсор на график, и вращать мышь, удерживая левую кнопку (рисунок 21).

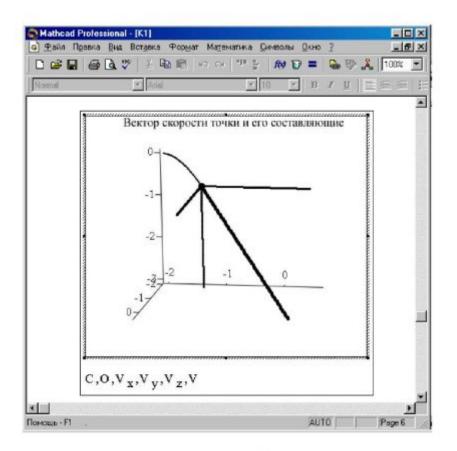


Рисунок 19

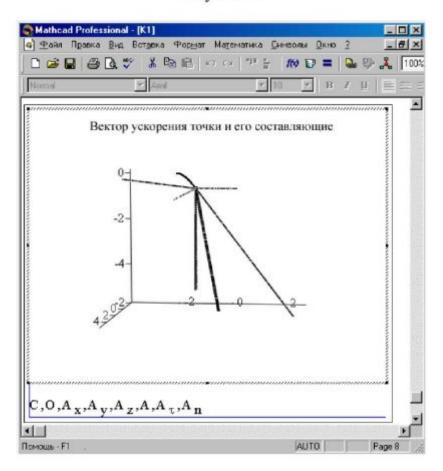
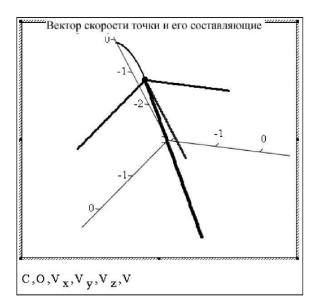


Рисунок 20



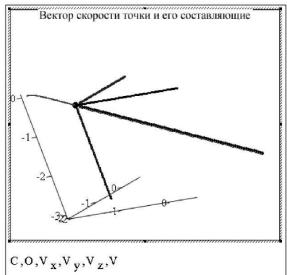


Рисунок 21

7 Построим графики изменения модулей скорости, ускорения, касательного и нормального ускорений точки в промежутке времени с момента начала движения до момента времени t_1 с помощью шаблона двумерных графиков.

Шаблон двумерного графика (X-Y Зависимость) расположен в меню Вставка (команда Графики). После вывода шаблона необходимо ввести переменную, функцию и пределы изменения переменной и функции. Если пределы изменения не заданы, они устанавливаются программой.

Примеры построения графиков представлены на рисунках 22 и 23.

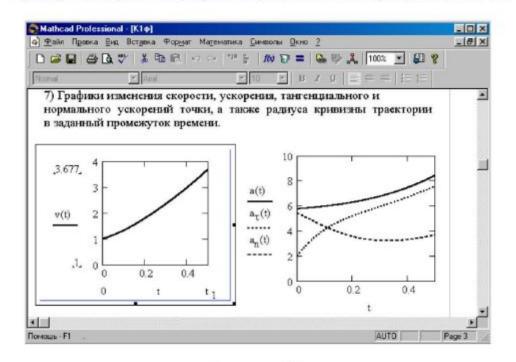


Рисунок 22

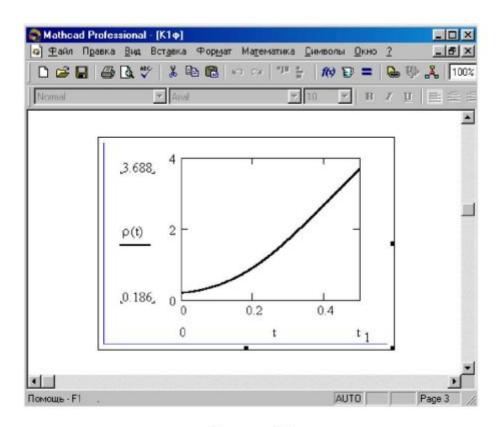


Рисунок 23

8 Создаем анимационный файл движения точки в рассматриваемый промежуток времени с помощью переменной *FRAME*.

В системе Mathcad имеется встроенная переменная FRAME, принимающая целочисленные значения и идентифицирующая номер текущего кадра анимации. Для анимации графика необходимо задать функцию, у которой переменная FRAME будет определять ее вид для каждого анимационного кадра.

В предлагаемой задаче переменной является время t, поэтому необходимо задать зависимость времени от переменной FRAME:

$$t = t_1 \cdot \frac{FRAME}{d},\tag{24}$$

где d – конечное значение переменной FRAME.

Принимая, например, d=50, набираем зависимость (24) в начале решения задания (рисунок 24). После этого выбором команды Анимация в меню Вид выводим диалоговое окно для задания параметров анимации. В окне необходимо задать три основных параметра анимации: начальное значение переменной FRAME-0, конечное значение переменной FRAME-50 и частоту смены кадров (рисунок 25).

Далее следует выделить мышью нужный фрагмент изображения. Можно выделить любую часть графика и расположенные около него объекты, например формулы. Наберем над анимируемым графиком формулу вывода значения

времени, выделим мышкой анимируемую область и нажмем кнопку анимация (рисунок 25).

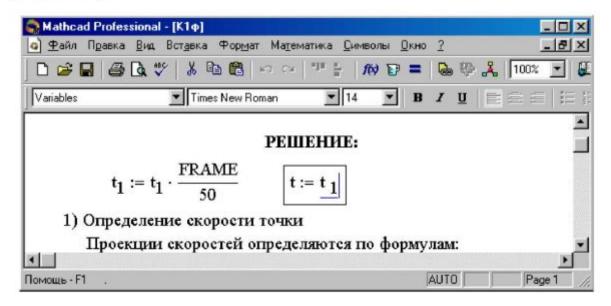


Рисунок 24

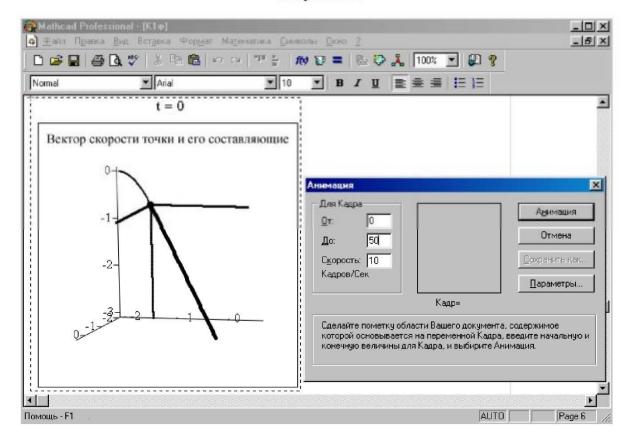
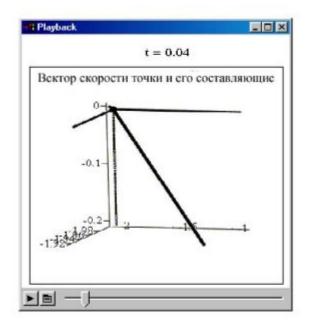
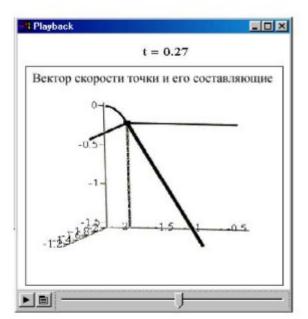


Рисунок 25

По окончании создания серии анимационных кадров появиться проигрыватель Playback. Щелкнув в окне проигрывателя на кнопке с изображением

треугольника, можно наблюдать изменение графика во времени (рисунок 26). Для сохранения полученного анимационного файла на диск необходимо нажать кнопку сохранения (Сохранить как ...) диалогового окна Анимация.





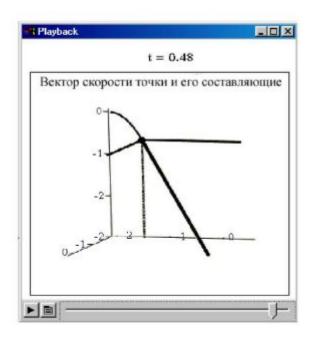


Рисунок 26

Список использованных источников

- 1 Тарг С.М. Краткий курс теоретической механики. М.: Наука, 1974. 480 с.
- 2 Попов М.В. Теоретическая механика: Краткий курс: Учебник для втузов. М.: Наука. Гл. ред. физ.-мат. лит., 1986. 330 с.
- 3 Дьяконов В. Mathcad 2000: учебный курс. СПб: Питер, 2000. 592 с.: ил.
- 4 Плис А.И., Сливина Н.А. Mathcad. Математический практикум для инженеров и экономистов: Учеб. Пособие. 2-е изд., перераб. и доп. М.: Финансы и статистика, 2003.-656 с.: ил.