ЕН.Ф.06 ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЧАСТЬ 1. СТАТИКА

Методические указания к самостоятельной работе студентов

Методические указания по разделу «Статика» курса «Теоретическая механика» предназначены для студентов всех специальностей. Методические указания включают в себя краткий теоретический материал по некоторым понятиям статики, необходимым для решения задач. В них приведены примеры по разделу «Статика». Методические указания могут быть использованы как рабочая тетрадь, так как в них наряду с разобранными примерами приводятся примеры и задачи, которые студенты должны выполнить самостоятельно.

СОДЕРЖАНИЕ

	Стр.
1. Основные понятия статики	_
2. Сложение сил	5
3. Разложение сил	
4. Проекция силы на ось	
5. Связи и их реакции	
6. Распределенные силы	
7. Алгебраический момент силы относительно центра	
8. Теорема Вариньона о моменте равнодействующей	
относительно центра	16
9. Пара сил. Основные теоремы о парах	
10. Условия равновесия различных систем сил	
11. Алгоритм решения задач по статике	
12. Примеры решения задач	
13. Равновесие сочлененной системы тел	
14. Контрольные вопросы	33
Список литературы	33

1. Основные понятия статики

Прежде чем приступить к решению задач по статике, необходимо изучить такие вопросы, как:

- основные понятия статики;
- равновесие сил;
- сложение сил;
- разложение сил;
- проекция силы на ось;
- связи и их реакции;
- распределенные силы;
- момент силы относительно центра;
- теорема Вариньона о моменте равнодействующей относительно центра;
- пара сил, основные теоремы о парах;
- условия равновесия различных систем сил.

Статикой называется раздел теоретической механики, в котором излагается общее учение о *силах* и изучаются условия *равновесия* материальных тел, находящихся под действием *сил*.

Под *равновесием* будем понимать состояние покоя тела по отношению к другим телам, например, по отношению к Земле.

Состояние *равновесия* или движения данного тела зависит от характера его механического взаимодействия с другими телами, т.е. от тех давлений, притяжений или отталкиваний, которые тело испытывает в результате этих взаимодействий. Мерой механического взаимодействия тел является *сила*.

Рассматриваемые в механике величины можно разделить на *ска-лярные*, т.е. такие, которые полностью характеризуются их числовым значением, и *векторные*, т.е. такие, которые помимо числового значения характеризуются еще и направлением в пространстве.

Сила – величина векторная. Ее действие на твердое тело определяется:

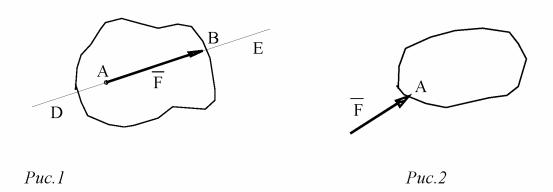
- а) числовым значением (или модулем) силы;
- б) направлением силы;
- в) точкой приложения силы.

Основной *единицей измерения* силы в Международной системе единиц (СИ) является *Ньютон* (Н).

Силу, как и все другие векторные величины, будем обозначать буквой с чертой над нею (например F), а модуль силы – той же буквой, но без черты над нею – (F).

Графически сила, как и другие векторы, изображается направленным отрезком (рис.1). Длина этого отрезка ($\mathbf{A}\mathbf{B}$) выражает в выбранном масштабе модуль силы, направление отрезка соответствует направлению силы, точка \mathbf{A} на рис.1 является точкой приложения силы. Прямая $\mathbf{D}\mathbf{E}$, вдоль которой направлена сила, называется линией действия силы.

Силу можно изобразить и так, что точкой приложения будет конец силы (как на рис.2).

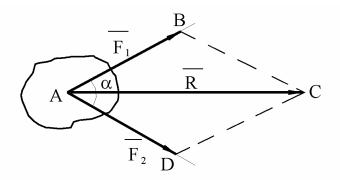


2. Сложение сил

Если в одной точке тела действует несколько сил, то их действие можно заменить одной силой, называемой *равнодействующей*. При этом силы складываются по *правилу параллелограмма*.

Складываемые силы называются составляющими, а само действие – *сложением сил*.

Например, если на тело действуют две силы F_1 и F_2 , то их действие можно заменить одной силой F_2 (рис.3), которая является геометрической суммой составляющих F_1 и F_2 .



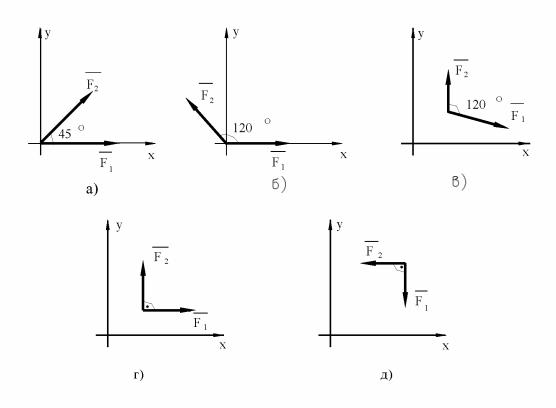
Puc.3

$$\vec{R} = \vec{F}_1 + \vec{F}_2$$

АВСО - параллелограмм.

$$R = \sqrt{F_1^2 + F_2^2 + 2F_1 \cdot F_2 \cdot \cos \alpha} \,.$$

На рис. 4 (а,б,в,г,д) показаны силы F_1 и F_2 ,причем F_1 = F_2 =10H. Постройте вектор F_2 и определите его модуль.



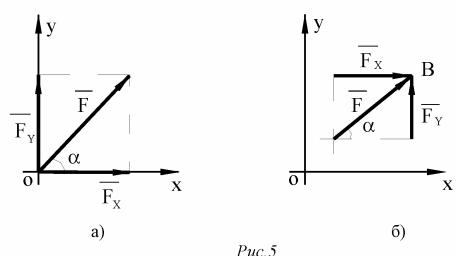
Puc.4

3. Разложение сил

Если на тело действует одна сила, то ее действие можно заменить несколькими силами, называемыми *составляющими*. Замена одной силы несколькими называется разложением силы на составляющие *по заданным направлениям*.

Чаще всего производят разложение сил на составляющие по двум взаимно перпендикулярным направлениям. Для этого необходимо построить прямоугольник, у которого разлагаемая сила является диагональю, а стороны параллельны заданным направлениям (рис.5).

На рис.5, а O- точка приложения силы F, а на рис.5, б B- точка приложения силы F.



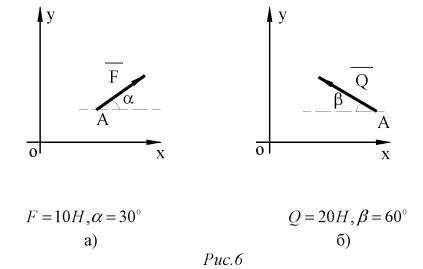
 F_x — составляющая силы F по направлению оси ОХ; F_y — составляющая силы F по направлению оси ОУ; F_x и F_y заменяют силу F.

Модули составляющих F_x, F_y : $|F_x| = F \cos \alpha, |F_y| = F \sin \alpha$

Решите задачу о разложении сил F, \mathcal{L} (рис.6) по двум взаимно перпендикулярным направлениям ОХ, ОУ. A – точка приложения силы.

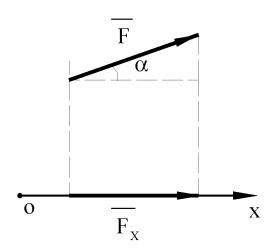
Найдите F_x , F_y , Q_x , Q_y (см. рис.6).

Решение выполнить в отдельной тетради.



4. Проекция силы на ось

Проекцию любого вектора на ось (в частности, проекцию силы F на ось X) определим, зная составляющую этого вектора по направлению оси X (рис.7).



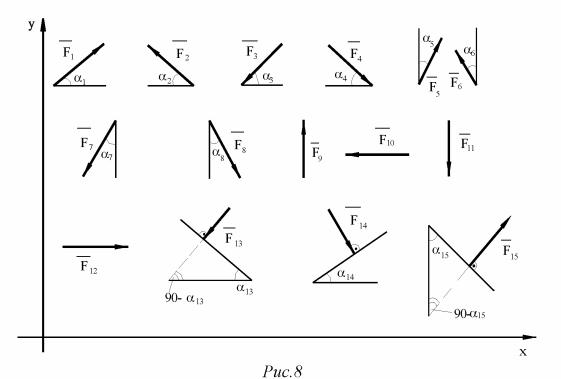
Puc.7

 F_x — составляющая силы F по направлению оси ОХ, при этом F_x — проекция силы F на ось ОХ.

Проекция силы на ось — алгебраическая величина, равная длине отрезка между проекцией начала и конца вектора на ось. Она вычисляется

как взятое с *соответствующим знаком* произведение модуля силы на косинус острого угла между силой и осью (см. рис.7). Знак «+» берется, если направление составляющей F_x совпадает с положительным направлением оси. Так, для силы F, изображенной на рис.7, $F_x = F \cos \alpha$.

На рис.8 даны примеры определения проекции силы на ось. Заполните пробелы и запишите решения в отдельной тетради.



 $F_{1x} = F_1 \cos \alpha_1$ $F_{1y} = F_1 \sin \alpha_1$ $F_{6x} = F_{11x} = F_{11x} = F_{11y} = F_{$

5. Связи и их реакции

 ${\it Cвязи}$ – все то, что ограничивает перемещение данного тела в пространстве.

Реакция связи – сила, с которой данная связь действует на тело.

Аксиома связей: всякое несвободное тело можно рассматривать как свободное, если отбросить связи и заменить их реакциями.

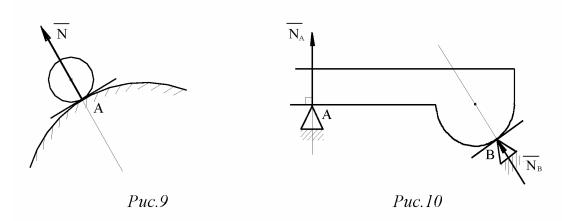
Рассмотрим виды связей и их реакции.

1. *Гладкая поверхность* (рис.9)

Реакция гладкой поверхности направлена по общей нормали к поверхностям соприкасающихся тел в точке их касания в сторону тела и приложена в этой точке.

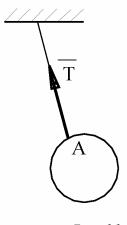
2. *Гладкая опора* (рис.10)

Реакция \tilde{N} приложена в точке касания, направлена по нормали к опирающейся поверхности в сторону тела.



3. *Нить* (рис.11)

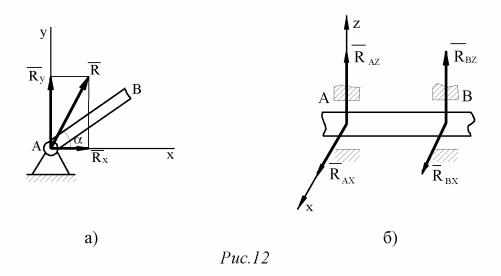
Реакция T натянутой нити направлена вдоль нити от тела к точке ее подвеса.



Puc.11

4. Цилиндрический шарнир (подшипник) (рис.12)

Реакция \tilde{R} цилиндрического шарнира (подшипника) может иметь любое направление в плоскости, перпендикулярной к оси шарнира (подшипника), т.е. в плоскости АХУ (\bar{R}_x ; \bar{R}_y) (см. рис. 12, а) или в плоскости АХZ (\bar{R}_x ; \bar{R}_z) (см. рис. 12, б).

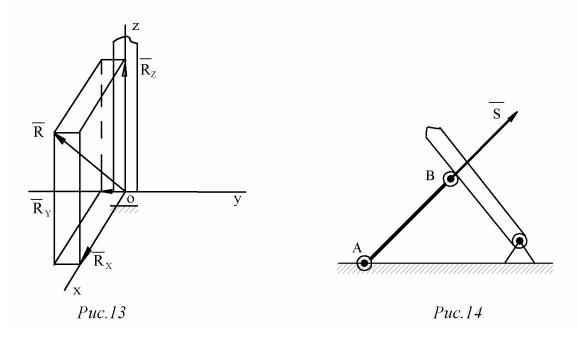


5. *Подпятник* (рис.13)

Реакция \tilde{R} подпятника A может иметь любое направление в пространстве.

6. Невесомый стержень с шарнирами на концах (рис. 14)

Реакция S стержня направлена вдоль прямой, соединяющей центры шарниров.

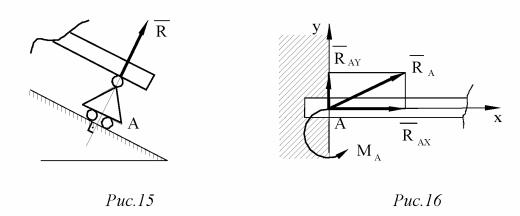


7. Подвижная шарнирная опора на катках (рис.15)

Линия действия реакции R перпендикулярна опорной поверхности.

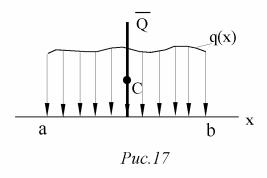
8. Плоская заделка (защемление) (рис. 16)

Реакция заделки состоит из силы $\stackrel{\scriptstyle }{K}_{\!\scriptscriptstyle A}$, направление которой заранее неизвестно, и пары сил с моментом $M_{\scriptscriptstyle A}$.



6. Распределенные силы

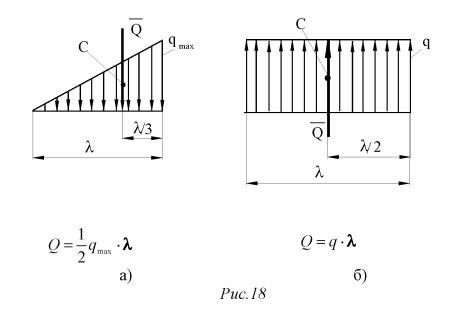
Распределенные по длине силы (рис.17) задаются интенсивностью q(x).



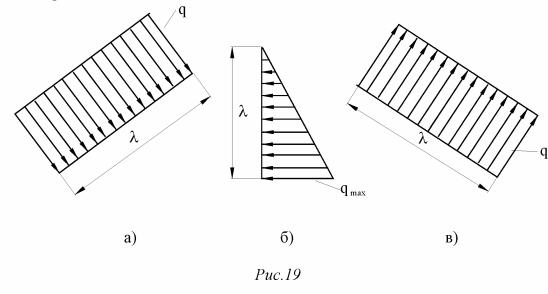
Размерность[q]=
$$\left[\frac{cuna}{\partial \pi u h a}\right]$$

Распределенные силы заменяют сосредоточенной силой \overline{Q} , величина которой равна площади фигуры (см. рис. 17); линия действия прохо-

дит через центр тяжести С фигуры и по направлению совпадает с направлением распределенных сил. В простейших частных случаях (рис.18,а,б):



На рис. 19 показаны распределенные силы. Необходимо заменить их сосредоточенной силой \overline{Q} , определив ее величину, направление и точку приложения, если q=1H/M, $q_{max}=2H/M$; $\emph{l}=6M$. Решение записать в отдельной тетради.



7. Алгебраический момент силы относительно центра

Алгебраический момент силы относительно центра — это скалярная величина, равная взятому с соответствующим знаком произведению модуля данной силы на плечо (рис.20). Размерность:

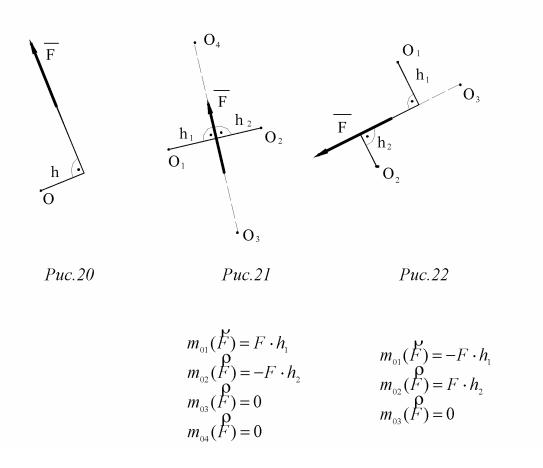
$$[m_{\circ}(\overline{F})] = [cuлa] \cdot [\partial лина]$$
 $m_{\circ}(F) = \pm Fh$
 \bigoplus

Плечо h определяется как длина перпендикуляра, опущенного из данного центра О на линию действия силы (см. рис.20).

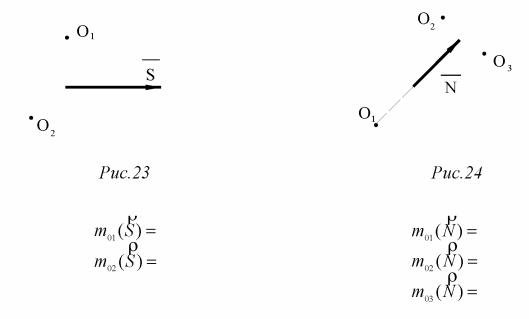
Правило знаков: знак «+» у $m_{_0}(\vec{F})$ в том случае, если сила стремится повернуть тело относительно моментной точки против часовой стрелки.

Частный случай: алгебраический момент силы относительно центра равен нулю, если линия действия силы проходит через моментную точку (плечо равно нулю).

Примеры определения алгебраического момента силы относительно центра показаны на рис. 21, 22.



Пример (рис.23, 24). Заполните пробелы и запишите решения в отдельной тетради.



8. Теорема Вариньона о моменте равнодействующей относительно центра

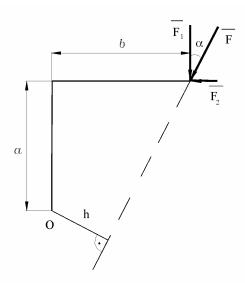
Если плечо ${\bf h}$ найти достаточно сложно, то следует использовать теорему Вариньона.

Теорема Вариньона: алгебраический момент равнодействующей плоской сходящейся системы сил относительно любого центра равен алгебраической сумме моментов слагаемых сил относительно того же центра.

$$m_0(\tilde{R}) = \sum m_0(\tilde{F}_k)$$

Пример (рис. 25).

Дано
$$F; \alpha; b; a$$
 Определить $m_0(F)$



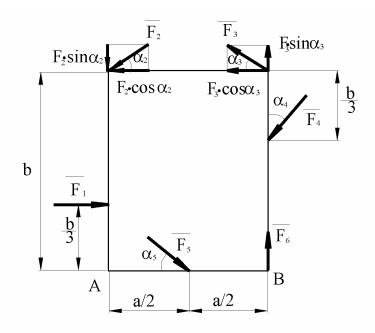
Puc.25

По определению момента силы относительно центра имеем (см. рис.25) $m_0(F) = -Fh$

Плечо h (см. рис.25) найти достаточно сложно, поэтому воспользуемся теоремой Вариньона. Разложим силу F на две составляющие F_1 и F_2 (см. рис.25), для которых плечи легко определяются. Тогда:

 $m_0(F) = m_0(F_1) + m_0(F_2) = -F_1 \cdot b + F_2 \cdot a = -F \cos \alpha \cdot b + F \sin \alpha \cdot a = F(-b \cos \alpha + a \sin \alpha).$

Пример (рис.26). Заполните пробелы и запишите решение в отдельной тетради.



$$Puc.26$$

$$m_{A}(F_{1}) = -F_{1} \cdot \frac{b}{3}$$

$$m_{B}(F_{1}) = -F_{1} \cdot \frac{b}{3}$$

$$m_{B}(F_{1}) = -F_{1} \cdot \frac{b}{3}$$

$$m_{B}(F_{2}) = F_{2} \cdot \cos \alpha_{2} \cdot b$$

$$m_{B}(F_{2}) = F_{2} \cdot \cos \alpha_{2} \cdot b + F_{2} \sin \alpha_{2} \cdot a$$

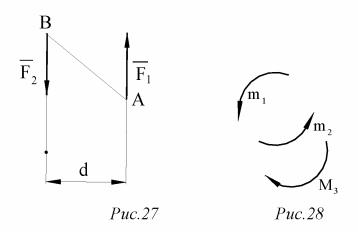
$$m_{B}(F_{2}) = F_{3} \cdot \cos \alpha_{3} \cdot b + F_{3} \sin \alpha_{3} \cdot a$$

$$m_{B}(F_{3}) = F_{3} \cdot \cos \alpha_{3} \cdot b$$

$$m_{B}(F_{5}) = 0$$

9. Пары сил. Основные теоремы о парах

Пара сил (рис.27) – система двух равных по модулю, параллельных, противоположно направленных сил, приложенных к твердому телу. Плоскость, в которой лежат силы, образующие пару, называется плоскостью действия пары. Кратчайшее расстояние между линиями действия сил пары называется плечом пары d (см. рис.27).



Алгебраическим моментом пары называется скалярная величина, равная взятому с соответствующим знаком произведению модуля одной из сил пары на плечо пары. Обозначения момента: m, M. Размерность: $[m] = [cuna] \cdot [\partial линa]$

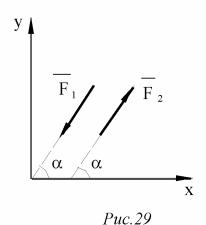
$$m = \pm F \cdot d$$

Знак «+» присваивается в том случае, если пара стремится повернуть плоскость действия пары против часовой стрелки.

Часто пару изображают круговой стрелкой (рис.28).

Теоремы о парах

1. *Сумма проекций сил пары*. Сумма проекций сил, составляющих пару, на любую ось равна нулю (рис. 29).



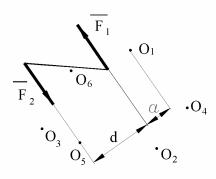
$$\begin{split} F_{_{1X}} &= -F_{_1} \cdot \cos \alpha \\ F_{_{2X}} &= F_{_2} \cdot \cos \alpha \quad \Rightarrow F_{_{1X}} + F_{_{2X}} = 0 \\ F_{_{1Y}} &+ F_{_{2Y}} = ? \end{split}$$

2. Теорема о сумме моментов сил пары (рис.30)

Алгебраическая сумма моментов сил, составляющих пару, относительно любого центра, лежащего в плоскости ее действия, не зависит от выбора моментной точки и равна моменту пары.

ра моментной точки и равна моменту пары. Докажем это. Имеем пару сил $(F_1; F_2)$, момент которой равен $m = F_1 \cdot d = F_2 \cdot d$.

Найдем моменты относительно точки O_1 силы F_1 и силы F_2 , а затем сумму моментов этих сил.



Puc.30

$$m_{01}(\vec{F}_1) = -F_1 a; \qquad m_{01}(\vec{F}_2) = F_2 (d+a)$$

Так как
$$F_1 = F_2$$
, то $\sum m_{01}(\vec{F}_K) = m_{01}(\vec{F}_1) + m_{01}(\vec{F}_2) = -F_1 \cdot a + F_1(d+a) = F_1d = m$

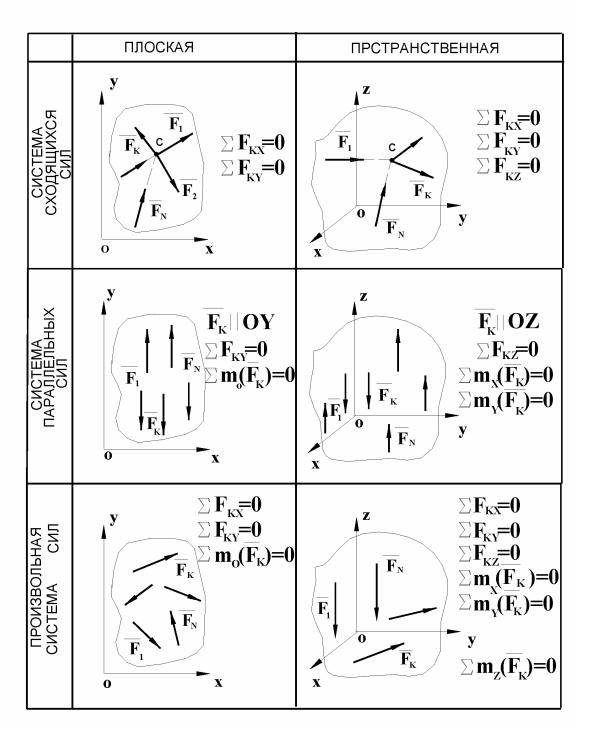
Заполните пробелы (см. рис.30) и запишите решение в отдельной тетради.

$$\sum m_{01}(\vec{F}_{K}) = F_{1} \cdot d = m; \qquad \sum m_{04}(\vec{F}_{K}) = \sum m_{05}(F_{K}) = F_{1} \cdot d = m; \qquad \sum m_{05}(F_{K}) = \sum m_{05}(F_{K}) = \sum m_{06}(F_{K}) = m;$$

10. Условия равновесия различных систем сил

В таблице 1 приведены условия равновесия для различных систем сил.

Таблица 1



11. Алгоритм решения задач по статике

Прежде всего записываем условие задачи (что дано и что нужно определить) и приступаем к решению по следующему плану:

- 1. Выбираем тело, равновесие которого рассматриваем (объект равновесия).
- 2. Изображаем активные силы, действующие на тело.
- 3. Освобождаем тело от связей и заменяем их реакциями, выбираем систему координат.

Пункты 1,2,3 объединены вместе понятием «расчетная схема».

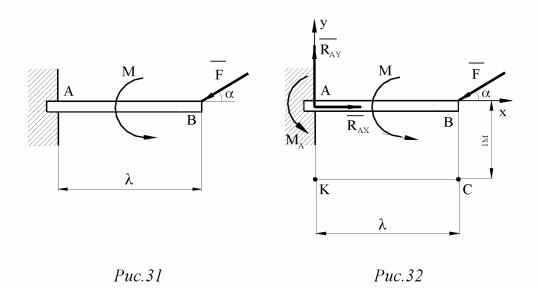
- 4. Анализируем полученную систему сил.
- 5. Составляем уравнения равновесия для данной системы сил.
- 6. Определяем искомые величины.
- 7. Проверяем полученное решение.
- 8. Анализируем полученные результаты.

12. Примеры решения задач

Пример. Определить реакции балки AB, если она нагружена парой сил с моментом $M=1~H \cdot M$ и силой F=1~H, приложенной под углом $\alpha=30^\circ$ к балке; длина балки l=1M (см. рис.31).

Запишем условие в краткой математической форме.

Дано
$$M = 1H \cdot M, F = 1H, \alpha = 30^{\circ}, l = 1M$$
 Определить R_A, M_A



Составим расчетную схему.

- 1. Объект равновесия: балка АВ.
- 2. Активные силы: момент M, сила F.
- 3. Связи: в точке A жесткая заделка; реакция заделки состоит из пары сил с моментом M_A и силы R_A , направление которой заранее неизвестно, поэтому мы ее раскладываем на составляющие по осям: R_{AX} ; R_{AY} . Расчетная схема готова (см. рис.32). Таким образом, на балку R_A действует система сил (M; R_A ; R_{AY} ; R_{AY}).
- 4. Анализируем полученную систему сил: (М; F; M_{A} ; K_{AX} ; K_{AY}) произвольная плоская система сил.
- 5. Составляем уравнения равновесия для такой системы сил, приняв за моментную точку A.

$$(1)\sum_{K} F_{KX} = 0 \qquad R_{AX} - F\cos\alpha = 0$$

$$(2)\sum_{K} F_{KY} = 0 \qquad R_{AY} - F\sin\alpha = 0$$

$$(3)\sum_{K} m_{A} \binom{\rho}{F_{K}} = 0 \qquad M_{A} + M - F\sin\alpha \cdot AB = 0$$

7. Определим искомые величины.

Из (1)
$$R_{AY} = F \cos \alpha = 1.0,866 = 0,866H$$

Из (2)
$$R_{AY} = F \sin \alpha = 1.0,5 = 0,5H$$

Из (3)
$$M_A = -M + F \sin \alpha \cdot AB = -1 + 1 \cdot 0,5 \cdot 1 = -0,5H \cdot M$$

7. Проверяем полученное решение.

В проверке необходимо составить уравнение моментов таким образом, чтобы все искомые величины вошли в это уравнение.

За моментную точку возьмем точку C на расстоянии 1м, чтобы упростить расчеты (см. рис.32).

$$\sum m_{C}(F_{K}) = 0$$

$$-R_{AX} \cdot CB - R_{AY} \cdot CK + M_{A} + M + F \cos \alpha \cdot CB = 0$$

$$CK = AB = 1M$$

$$-0,866 \cdot 1 - 0,5 \cdot 1 - 0,5 + 1 + 0,866 \cdot 1 = 0$$

$$0 = 0$$

Проверка показала, что задача решена верно.

8. Анализируем полученные результаты.

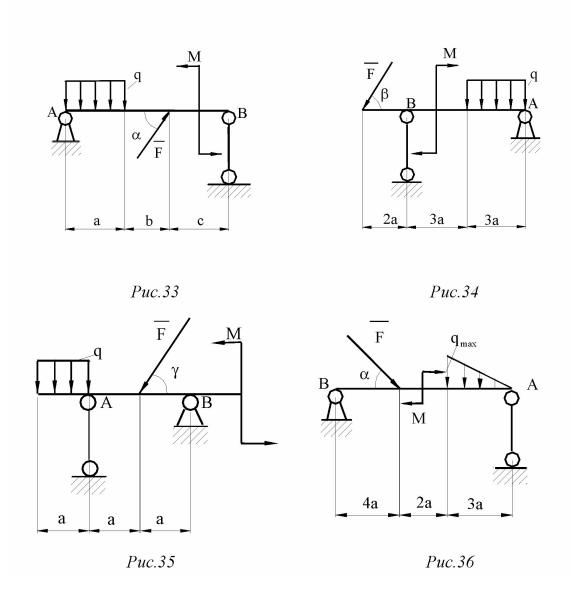
$$R_{AX} = 0,866H$$

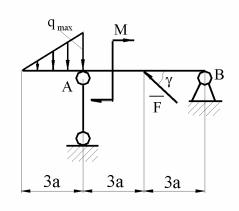
$$R_{AY} = 0,5H$$

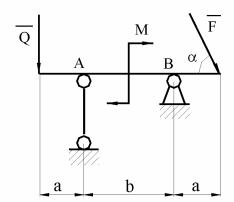
$$M_{A} = -0,5H \cdot M$$

Направления составляющих K_{AX} и K_{AY} реакции K_{A} были выбраны верно (знак «+» в ответе), а момент в заделке M_{A} в действительности направлен в сторону, противоположную направлению, указанному на расчетной схеме (знак «-» в ответе).

На рис. 33-50 представлены задачи по определению реакций связей, которые необходимо решить самостоятельно.

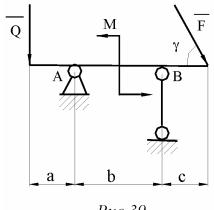




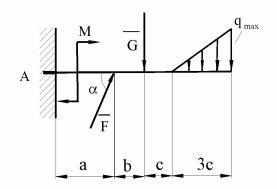


Puc.37

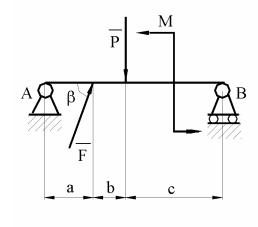
Puc.38



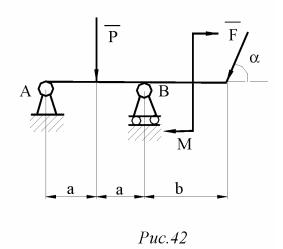
Puc.39



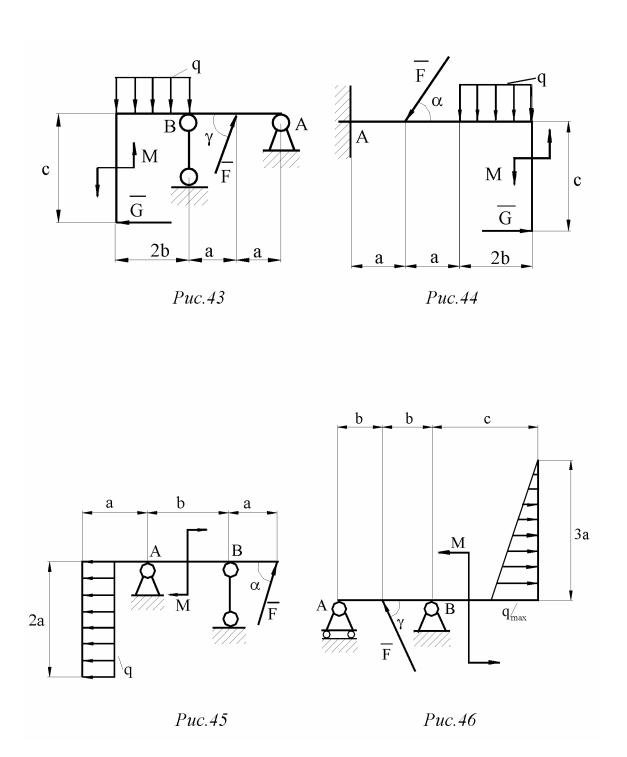
Puc.40

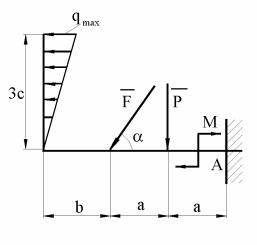


Puc.41

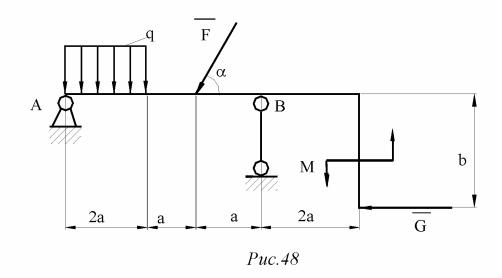


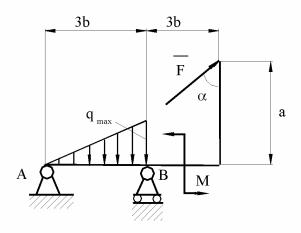
23



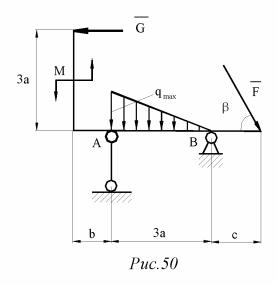


Puc. 47





Puc.49



13. Равновесие сочлененной системы тел

В статике твердого тела наряду с равновесием одного тела рассматриваются сочлененные системы тел, т.е. совокупности твердых тел, касающихся друг друга своими поверхностями или соединенных друг с другом шарнирами, гибкими нитями или стержнями.

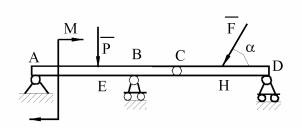
При определении реакций связей удобным является способ расчленения, при котором рассматривается равновесие одного тела (или группы тел). При этом все остальные тела отбрасываются, а их действие на тело, равновесие которого рассматривается, заменяется реакциями. На основании аксиомы действия и противодействия реакции, действующие на взаимодействующие тела, равны по модулю и направлены в противоположные стороны.

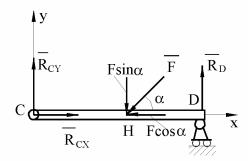
Пример. Две балки AC и CD, соединенные шарниром C (рис.51), закреплены шарнирно в точке A, а в точках B и D опираются на катки.

Определить реакции опор A,B,D, если на балку действуют: пара сил с моментом M=200 $H \cdot M$, сила P=80H и сила F=120H, приложенная под углом α =30 $^{\circ}$ к горизонтали.

Размеры балки: AE=4м; EB=2м; BC=3м; CH=HD=2м. Запишем условие в краткой математической форме.

Дано	M=200 $H \cdot M$; P=80H; F=120H; α =30°; AE=4м; EB=2м; BC=3м; CH=HD=2м.
Определить	$\mathcal{R}_{\scriptscriptstyle A},\mathcal{R}_{\scriptscriptstyle B},\mathcal{R}_{\scriptscriptstyle D}$





Puc.51 Puc.52

Система твердых тел состоит из двух балок: ABC и CD, соединенных в точке C шарниром. Рассмотрим равновесие каждой из балок отдельно. Менее нагруженной является балка CD. Поэтому сначала рассмотрим равновесие балки CD (рис.52)

- 1. Объект равновесия: балка СО.
- 2. Активные силы: F, приложена в точке H.
- 3. Связи: в точке C цилиндрический шарнир (реакции R_{CX} и R_{CY}), в точке D катки (реакция R_{D}).
- 4. Анализируем полученную систему сил: $(F; R_{cx}; R_{cy}; R_D)$ произвольная плоская система сил, для равновесия которой должны выполняться следующие уравнения:

5.
$$\sum F_{KX} = 0$$
 $R_{CX} - F \cos \alpha = 0$ (1)
 $\sum F_{KY} = 0$ $R_{CY} - F \sin \alpha + R_D = 0$ (2)
 $\sum m_C(F_K) = 0$ $-F \sin \alpha \cdot CH + R_D \cdot CD = 0$ (3)

6. Решаем систему уравнений (1-3).

Из (1)
$$R_{cx} = F \cos \alpha = 120 \cdot 0,866 = 103,9H$$

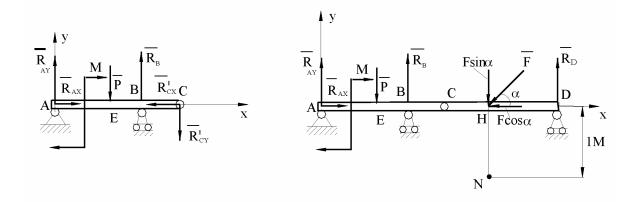
Из (3)
$$R_D = \frac{F \sin \alpha \cdot CH}{CD} = \frac{120 \cdot 0.5 \cdot 2}{4} = 30H$$

Из (2)
$$R_{CY} = F \sin \alpha - R_D = 120 \cdot 0.5 - 30 = 30 H$$

Рассмотрим равновесие второй балки – АС (рис.53).

- 1. Объект равновесия: балка АС.
- 2. Активные силы: пара сил с моментом M, сила F, приложенная в точке E.
- 3. Связи: в точке A цилиндрический шарнир (реакции R_{AX} ; R_{AY}), в точке B катки (реакция R_B), в точке C цилиндрический шарнир. На основании аксиомы действия и противодействия составляющие этой реакции равны

по модулю составляющим реакций шарнира C, приложенным к балке CD, и направлены в противоположные стороны (реакции $R'_{CX}; R'_{CY}$) $R_{CX} = R'_{CX}; R_{CY} = R'_{CY}; R_{CY} = R'_{CY$



Puc.53 Puc.54

4. Анализируем полученную систему сил:

(М; P; R_{AX} ; R_{AY} ; R_{B} ; R'_{CX} ; R'_{CY}) — произвольная плоская система сил, для которой справедливы следующие уравнения:

5.
$$\sum F_{KX} = 0$$
 $R_{AX} - R'_{CX} = 0$ (4)
 $\sum F_{KY} = 0$ $R_{AY} - P + R_B - R'_{CY} = 0$ (5)
 $\sum m_C(\vec{F}_K) = 0$ $-R_B \cdot BC + P \cdot CE - M - R_{AY} \cdot AC = 0$ (6)

6. Решаем систему уравнений (4-6).

Из (4)
$$R_{AX} = R'_{CX} = R_{CX} = 103,9H$$

Из (5) $R_{AY} = P - R_B + R'_{CY}$
 $R_{AY} = P - R_B + R_{CY}$

Подставим выражение R_{AY} в уравнение (6):

$$-R_{B} \cdot BC + P \cdot CE - M - (P - R_{B} + R_{CY}) \cdot AC = 0;$$

$$-R_{B} \cdot BC + P \cdot CE - M - P \cdot AC + R_{B} \cdot AC - R_{CY} \cdot AC = 0;$$

$$R_{B} \cdot (AC - BC) = +P(AC - CE) + R_{CY} \cdot AC + M;$$

$$R_{B} = \frac{P \cdot AE + M + R_{CY} \cdot AC}{AB} = \frac{80 \cdot 4 + 200 + 30 \cdot 9}{6} = 131,6H;$$

$$R_{AY} = P - R_{B} + R_{CY}$$

$$R_{AY} = 80 - 131,6 + 30 = -21,6H$$

7. Проверяем полученные результаты.

Составим расчетную схему для всей системы в целом (рис. 54). При этом реакции связей в точке C не должны учитываться (как внутренние взаимно уравновешивающие силы). Для проверки составим уравнение моментов относительно точки N.

$$\sum m_{N}(\widetilde{F}_{K}) = 0$$

$$-R_{AX} \cdot HN - R_{AY} \cdot AH - M + P \cdot HE - R_{B} \cdot BH + F \cos \alpha \cdot HN + R_{D} \cdot DH = 0;$$

$$-103.9 \cdot 1 - (-21.6) \cdot 11 - 200 + 80 \cdot 7 - 131.6 \cdot 5 + 120 \cdot 0.866 \cdot 1 + 30 \cdot 2 = 0;$$

$$-103.9 + 237.6 - 200 + 560 - 658 + 103.9 + 60 = 0;$$

$$657.6 - 658 = 0;$$

$$-0.4 = 0.$$

Допустимая ошибка в расчетах – в пределах 5 % от максимального значения в проверочном уравнении. В данном случае ошибка составляет:

$$\delta = \frac{0.4 \cdot 100\%}{658} = 0.06\%$$

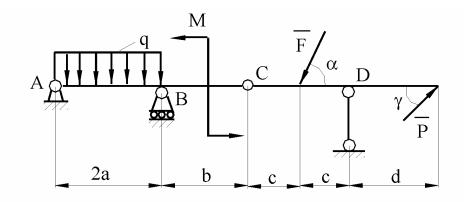
8. Анализируем полученные результаты.

$$R_{AX} = 103,9H;$$

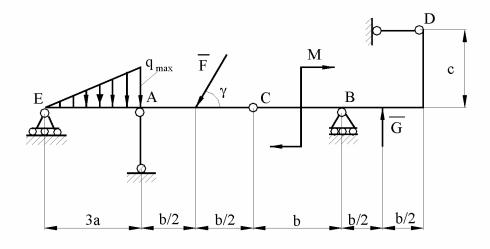
 $R_{AY} = -21,6H;$
 $R_{A} = \sqrt{R_{AX}^{2} + R_{AY}^{2}} = 106,1H;$
 $R_{B} = 131,6H;$
 $R_{D} = 30H.$

Знак "-" указывает, что составляющая реакции $\overline{R}_{_{\! A}}$ $\overline{R}_{_{\! AY}}$ направлена не вверх, как предполагалось, а по вертикали вниз.

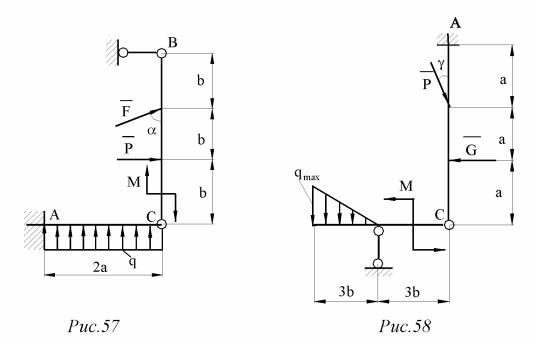
На рис. 55-58 представлены задачи на равновесие сочлененных систем, которые необходимо решить самостоятельно.



Puc.55



Puc.56



14. Контрольные вопросы

- 1. Что называется связью?
- 2. Что называется реакцией связи?
- 3. Сформулируйте аксиому связей.
- 4. Перечислите основные виды связей и их реакции.
- 5. Что называется проекцией силы на ось?
- 6. Как вычисляется проекция силы на ось?
- 7. Чем заменяется равномерно распределенная нагрузка?
- 8. Чем заменяется нагрузка, распределенная по линейному закону?
- 9. Что называется алгебраическим моментом силы относительно центра?
- 10. Как определяется знак алгебраического момента силы относительно центра?
- 11. Как определяется плечо силы?
- 12. Когда момент силы относительно центра равен нулю?
- 13. Сформулируйте теорему Вариньона о моменте равнодействующей.
- 14. Что называется парой сил?
- 15. Как определяется алгебраический момент пары?
- 16. Сформулируйте теорему о сумме моментов сил пары.
- 17. Сформулируйте условия равновесия для плоской системы сходящихся сил.
- 18. Сформулируйте условия равновесия для плоской системы параллельных сил.
- 19. Сформулируйте условия равновесия для произвольной плоской системы сил.

Список литературы

- 1. Тарг С.М. Краткий курс теоретической механики. М.: Высшая школа, 1995.
- 2. Бать М.И. и др. Теоретическая механика в примерах и задачах. Ч.І. М.: Наука, 1986.
- 3. Никитин Н.Н. Курс теоретической механики. М.: Высшая школа, 1990.