Лекции по динамике

 

Главная

Лекция 5. Количество движения системы (импульс системы).

В данной лекции рассматриваются следующие вопросы:

1. Количество движения системы (импульс системы).

2. Теорема об изменении количества движения (импульса).

3. Закон сохранения количества движения (импульса).

4. Главный момент количеств движения (импульса) системы.

5. Теорема моментов.

6. Закон сохранения главного момента количеств движения (импульса).

Изучение данных вопросов необходимо для динамики колебательного движения механической системы, для решения задач в дисциплинах «Теория машин и механизмов» и «Детали машин».

 

В предыдущих лекциях излагались методы определения движения материальной системы, которые сводились к составлению дифференциальных уравнений, как правило, второго порядка. И решение их оказывалось не всегда простым.

Если ввести новые обобщенные понятия, характеризующие свойства и движение системы в целом, то эти трудности нередко можно обойти. К ним относятся понятия о центре масс и кинетической энергии, которые уже нам знакомы, понятия о количестве движения материальной системы и моменте количества движения.

Теоремы, определяющие изменение этих характеристик, позволяют получить более полное представление о движении материальной системы.

 

Количество движения системы (импульс системы).

Количество движения (импульс тела) – векторная физическая величина, равная произведению массы тела на его скорость:

Импульс (количество движения) – одна из самых фундаментальных характеристик движения тела или системы тел.

Запишем II закон Ньютона в другой форме, учитывая, что ускорение  Тогда   следовательно

Произведение силы на время ее действия равно приращению импульса тела (рис. 1):

Где  - импульс силы, который показывает, что результат действия силы зависит не только от ее значения, но и от продолжительности ее действия.

Рис.1

 

Количеством движения системы (импульсом) будем называть векторную величину , равную геомет­рической сумме (главному вектору) количеств движения (импульсов) всех точек системы (рис.2):

Из чертежа видно, что независимо от величин скоростей точек системы (если только эти скорости не параллельны) вектор   может принимать любые значения и даже оказаться равным нулю, когда многоугольник, построенный из векторов , замкнется. Следова­тельно, по величине   нель­зя полностью судить о ха­рактере движения системы.                                                                   

Рис.2

 

Найдем формулу, с по­мощью которой значительно легче вычислять величину , а также уяснить ее смысл.

Из равенства

следует, что

Беря от обеих частей производную по времени, получим

Отсюда находим, что

т.е. количество движения (импульс) системы равно произведению массы всей системы на скорость ее центра масс. Этим результатом особенно удобно пользоваться при вычислении количеств движения твердых тел.

Из формулы видно, что если тело (или система) движется так, что центр масс остается неподвижным, то количество движения тела равно нулю. Например, количество движения тела, вращающегося вокруг неподвижной оси, проходящей через его центр масс, будет равно нулю.

Если же движение тела является сложным, то величина  не будет характеризовать вращательную часть движения вокруг центра масс. Например, для катящегося колеса  независимо от того, как вращается колесо вокруг его центра масс С.

Таким образом, количество движения характеризует только поступательное движение системы. При сложном же движении величина  характеризует только поступательную часть движения системы вместе с центром масс.

 

Теорема об изменении количества движения (импульса).

Рассмот­рим систему, состоящую из п материальных точек. Составим для этой системы дифференциальные уравнения движения  и сложим их почленно. Тогда получим:

Последняя сумма по свойству внутренних сил равна нулю. Кроме того,                  

Окончательно находим:

Уравнение выражает теорему об изменении коли­чества  движения  (импульса) системы  в  дифференциальной форме: производная по времени от количества движения (импульса) системы равна геометрической сумме всех действующих на систему внешних сил. В проекциях на координатные оси будем иметь:

Найдем другое выражение теоремы. Пусть в момент t=0 количество движения системы равно , а в момент  становится равным . Тогда, умножая обе части равенства  на dt и интегрируя, получим:

  

или

   

так как интегралы, стоящие справа, дают импульсы внешних сил.

Уравнение выражает теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за некоторый промежу­ток времени равно сумме импульсов действующих на систему внешних сил за тот же промежуток времени.

В проекциях на координатные оси будем иметь:

Укажем на связь между доказанной теоремой и теоремой о дви­жении центра масс. Так как  то, подставляя это значение в равенство и учитывая, что , мы получим .

Следовательно, теорема о движении центра масс и теорема об изменении количества движения системы представляют собой, по существу, две разные формы одной и той же теоремы. В тех случаях, когда изучается движение твердого тела (или системы тел), можно в равной мере пользоваться любой из этих форм.

Практическая ценность теоремы состоит в том, что она позволяет исключить из рассмотрения наперед неизвестные внутренние силы (например, силы давления друг на друга частиц жидкости).

 

Закон сохранения количества движения (закон сохранения импульса).

Из теоремы об изменении количества движения системы можно получить следую­щие важные следствия:

1) Пусть сумма всех внешних сил, действующих на замкнутую систему, равна нулю:

Тогда из уравнения  следует, что Q==const. Таким образом, если сумма всех внешних сил, действующих на замкнутую систему, равна нулю, то вектор количества движения (импульса) системы будет постоянен по модулю и направлению.

2) Пусть внешние силы, действующие на систему, таковы, что сумма их проекций на какую-нибудь ось (например Оx) равна нулю:

Тогда из уравнения  следует, что при этом Qx=const. Таким образом, если сумма проекций всех действующих внешних сил на какую-нибудь ось равна нулю, то проекция количества движения (импульса) системы на эту ось есть величина постоянная.

Эти результаты и выражают закон сохранения количества движения системы: при любом характере взаимодействия тел, образующих замкнутую систему, вектор полного импульса этой системы все время остается постоянным.

Из них следует, что внутренние силы изменить суммарное количество движения системы не могут.

Закон сохранения полного импульса изолированной системы – это универсальный закон природы. В более общем случае, когда система незамкнута, из  следует, что полный импульс незамкнутой системы не остается постоянным. Его изменение за единицу времени равно геометрической сумме всех внешних сил.

Рассмотрим неко­торые примеры:

а) Явление отдачи или отката. Если рассматривать винтовку и пулю как одну систему, то давление пороховых газов при выстреле будет силой внутренней. Эта сила не может изменить суммарное количество движения системы. Но так как пороховые газы, действуя на пулю, сообщают ей некоторое количество движения, направленное вперед, то они одновременно должны сообщить винтовке такое же количество движения в обратном направлении. Это вызовет движение винтовки назад, т.е. так называемую отдачу. Аналогичное явление получается при стрельбе из орудия (откат).

б) Работа   гребного   винта   (пропеллера). Винт сообщает некоторой массе воздуха (или воды) движение вдоль оси винта, отбрасывая эту массу назад. Если рассматривать отбрасываемую массу и самолет (или судно) как одну систему, то силы взаимодействия винта и среды как внутренние не могут изменить суммарное коли­чество движения этой системы. Поэтому при отбрасывании массы воздуха (воды) назад самолет (или судно) получает соответствующую скорость движения вперед, такую, что общее количество движения рассматриваемой системы останется равным нулю, так как оно было нулем до начала движения.

Аналогичный эффект достигается действием весел или гребных колес.

в) Реактивное движение. В реактивном снаряде (ракете) газообразные продукты горения топлива с большой скоростью выбрасываются из отверстия в хвостовой части ракеты (из сопла реактивного двигателя). Действующие при этом силы давления бу­дут силами внутренними, и они не могут изменить суммарное коли­чество движения системы ракета - продукты горения топлива. Но так как вырывающиеся газы имеют известное количество движения, на­правленное назад, то ракета получает при этом соответствующую скорость движения вперед.

 

Пример 1. На рельсах стоит платформа массой m1=10 т. На платформе закреплено орудие массой m2=5 т, из которого производится выстрел вдоль рельсов. Масса снаряда m3=100 кг; его начальная скорость относительно орудия v0=500 м/с. Найти скорость  платформы в первый момент после выстрела, если: 1) платформа стояла неподвижно (v = 0);  2) платформа двигалась со скоростью v = 18 км/ч, а выстрел был произведен в направлении ее движения; 3) платформа двигалась со скоростью v = 18 км/ч, а выстрел был произведен в направлении, противоположном направлению ее движения.

Решение. Для решения задачи воспользуемся законом сохранения импульса, утверждающим, что импульс замкнутой системы остается постоянным.

Запишем импульс системы, состоящей из пушки, орудия и снаряда, до выстрела () и после него (), в результате которого этот импульс меняется. Напомним, что суммарный импульс системы представляет собой векторную сумму импульсов тел, входящих в систему.

1) Импульс системы до выстрела

т.к. вначале платформа с орудием покоилась (v=0).

После выстрела импульс системы

По закону сохранения импульса , следовательно,      

Спроецируем это уравнение на выбранную ось х (рис.3):

Рис.3

 

Обратим внимание на следующий факт. Из опыта мы знаем, что в результате выстрела платформа с орудием откатится в сторону, противоположную выстрелу, поэтому при проецировании мы сразу можем учесть это, поставив знак «минус» перед скоростью u платформы. Тогда мы получим

откуда

В ряде случаев, когда заранее нет ясности в том, в какую сторону будет двигаться объект, считаем, что скорость направлена вдоль оси х. В этом случае положительное значение полученного результата вычислений подтвердит наше предположение, а отрицательное – укажет на то, что движение происходит в направлении, противоположном выбранному.

2) Закон сохранения импульса в случае, когда платформа движется со скоростью v=18 км/ч = 5 м/с, имеет вид

В проекциях на ось х (рис.4):

Рис.4

 

Отсюда

Обратим внимание на то, что, посчитав, как в предыдущем случае, что платформа после выстрела начнет двигаться в обратную сторону, мы ошиблись, на что указывает знак «минус» в полученном ответе. Значит, направление движения платформы осталось прежним, но скорость ее уменьшилась.

3) Закон сохранения импульса в третьем случае имеет вид, аналогичным тому, что был записан для второго случая, т.е.

с той лишь разницей, что при проецировании на ось х (рис.5), получим другие знаки для скоростей:

Рис.5

 

Это даст 

Таким образом, платформа будет двигаться в том же направлении со скоростью большей, чем первоначальная.

 

Пример 2. На железнодорожной платформе, движущейся по инерции со скоростью v, укреплено орудие, ствол которого направлен в сторону движения платформы под углом α к горизонту (рис.5.1). Орудие произвело выстрел, в результате чего скорость платформы с орудием уменьшилась в три раза. Найти скорость снаряда относительно орудия при вылете из ствола. Масса снаряда m1, масса платформы с орудием m2.

Рис.5.1

 

Решение. На систему тел “платформа с орудием + снаряд” действуют внешние силы - тяжести и нормального давления со стороны рельсов, направленные вертикально (горизонтальные силы трения можно считать пренебрежимо малыми) и внутренняя сила - давления газов, образующихся при выстреле. Следует учесть, что при выстреле сила нормального давления превышает силу тяжести, их равнодействующая не равна нулю. Следовательно, при выстреле вертикальная составляющая импульса системы не сохраняется, горизонтальная составляющая импульса останется неизменной:

pIx=pIIx.                                           (1)

В состоянии I (до выстрела) проекция импульса системы на ось х:

pIx=(m1+m2)v.                                (2)

Рассмотрим состояние II (после выстрела). Обозначим через v0 скорость снаряда относительно платформы, u1 - скорость снаряда относительно Земли, u2 - скорость движения платформы с орудием. Импульс системы

pIIx=m1u1x-m2u2.

Проекция скорости движения снаряда относительно Земли u1x будет меньше, чем относительно орудия v0x=v0cosα на u2:

u1x=v0cosα-u2.

Следовательно,

Подставляя (2) и (3) в (1) и учитывая, что по условию u2=v/3, получаем уравнение

откуда выразим искомую скорость:

 

Пример 3. Человек массой m1=60 кг, бегущий со скоростью v1=2 м/с, впрыгивает на тележку массой m2=80 кг, движущуюся со скоростью v2=1 м/с. С какой скоростью будет двигаться тележка с человеком на ней, если: 1) человек догоняет тележку; 2) тележка и человек двигаются навстречу друг другу?

Решение. Закон сохранения импульса в данном случае имеет вид

1) Когда человек догоняет тележку, то их скорости направлены в одну сторону, следовательно, при проецировании на горизонтальную ось имеем

откуда

2) Когда человек и тележка движутся навстречу друг другу, то их скорости имеют разные знаки. Тогда уравнение в проекциях на ось х имеет вид

откуда 

Тележка с человеком на ней будет двигаться в сторону, противоположную тому, куда двигалась тележка без человека.

 

Пример 4. Конькобежец массой M = 70 кг, стоя на коньках на льду, бросает в горизонтальном направлении камень массой m = 3 кг со скоростью v= 8 м/с. На какое расстояние откатится при этом конькобежец, если коэффициент трения коньков о лед k=0,02?

Решение. Импульс системы «конькобежец-камень» сохраняется, поэтому

С учетом того, что v0=0, получим в уравнение в проекциях на горизонтальную ось

Mu=mv,

откуда скорость конькобежца u=mv/M.  Из закона сохранения энергии кинетическая энергия конькобежца расходуется им на работу против силы трения, поэтому Aтр=Wкин.

 

т.к. cosα=-1 (сила трения направлена в сторону, противоположную скорости).

Приращение кинетической энергии

Тогда  

Расстояние

 

 Главный момент количеств движения (импульса) системы.

Главным моментом количеств движения (или кинетическом моментом) системы относительно данного центра О называется величина , равная геометрической сумме моментов количеств движения всех точек системы относи­тельно этого центра.

Аналогично определяются моменты количеств движения системы относительно координатных осей:

При этом  представляют собою одновременно проекции вектора  на координатные оси.

Подобно тому, как количество движения системы является характеристикой ее поступательного движения, главный момент количеств движения системы является характеристи­кой вращательного движения системы.

Рис.6

 

Чтобы уяснить механический смысл величины L0 и иметь необхо­димые формулы для решения задач, вычислим кинетический момент тела, вращающегося вокруг неподвижной оси (рис.6). При этом, как обычно, определение вектора  сводится к определению его проекций .

Найдем сначала наиболее важ­ную для приложений формулу, оп­ределяющую величину Lz, т.е. кине­тический момент вращающегося тела относительно оси вращения.

Для любой точки тела, отстоя­щей от оси вращения на расстоя­нии , скорость . Сле­довательно, для этой точки . Тогда для всего тела, вынося общий множитель ω за скобку, получим

 

Величина, стоящая в скобке, представляет собою момент инерции тела относительно оси z. Окончательно находим

Таким образом, кинетический момент вращающегося тела относительно оси вращения равен произведению момента инерции тела относительно этой оси на угловую скорость тела.

Если система состоит из нескольких тел, вращающихся вокруг одной и той же оси, то, очевидно, будет

Легко видеть аналогию между формулами  и : количество движения равно произведению массы (величина, характеризующая инертность тела при поступательном движении) на скорость; кинети­ческий момент равен произведению момента инерции (величина, характеризующая инертность тела при вращательном движении) на угловую скорость.

 

Пример 5. Маховое колесо начинает вращаться с угловым ускорением ε = 0,5 рад/с2 и через время t1 = 15 с после начала движения приобретает момент импульса L1 = 70 кгм2/с. Найти кинетическую  энергию W колеса и его момент импульса L2 через время t2 = 20 с после начала движения.

Решение. Угловая скорость махового колеса через время t1 после начала вращения ω1=εt1. Поскольку момента импульса колеса L1=Iω1, то его момент инерции

Угловая скорость через время t2 после начала вращения ω2=εt2.

Кинетическая энергия через время t2 после начала вращения колеса равна

Момент импульса колеса через время t2 после начала его вращения

 

Пример 6. Из ружья массой m1 = 5 кг вылетает пуля массой m2 = 5 г со скоростью v2 = 600 м/с. Найти скорость v1 отдачи ружья.

Решение.

1) По закону сохранения импульса:

при этом  то:

Ответ:  Скорость отдачи ружья составляет 0,6 м/с.

 

Теорема об изменении главного момента количеств движения системы (теорема моментов).

Теорема моментов для одной материальной точки будет справедлива для каждой из точек системы. Следовательно, если рассмотреть точку системы с массой , имеющую скорость , то для нее будет

где и  - равнодействующие всех внешних и внутренних сил, действующих на данную точку.

Составляя такие уравнения для всех точек системы и складывая их почленно, получим:

Но последняя сумма по свойству внутренних сил системы равна нулю. Тогда найдем окончательно:

Полученное уравнение выражает следующую теорему моментов для системы: производная по времени от главного момента количеств движения системы относительно некоторого неподвижного центра, равна сумме моментов всех внешних сил системы относительно того же центра.

Проектируя обе части равенства на неподвижные оси Охуz , получим:

Уравнения выражают теорему моментов относительно любой неподвижной оси.

В кинематике было показано, что движение твердого тела в общем случае сла­гается из поступательного движения вместе с некоторым полюсом и вращательного движения вокруг этого полюса. Если за полюс выбрать центр масс, то поступательная часть движения тела может быть изу­чена с помощью теоремы о движении центра масс, а вращатель­ная - с помощью теоремы моментов.

Практическая ценность теоремы моментов состоит еще в том, что она, аналогично теореме об изменении количества движения, по­зволяет при изучении вра­щательного движения системы исключать из рас­смотрения все наперед неиз­вестные внутренние силы.

 

Закон сохранения главного момента количеств движения (импульса).

Из теоремы моментов можно получить следующие важные следствия.

1) Пусть сумма моментов относительно центра О всех внешних сил, действующих на систему, равна нулю:

Тогда из уравнения  следует, что при этом . Таким образом, если сумма моментов относительно данного центра всех приложенных к системе внешних сил равна нулю, то главный, момент количеств движения системы относительно этого центра будет численно и по направлению постоянен.

2) Пусть внешние силы, действующие на систему, таковы, что сумма их моментов относительно некоторой неподвижной оси Оz равна нулю:

Тогда из уравнения  следует, что при этом Lz = const. Таким образом, если сумма моментов всех действующих на си­стему внешних сил относительно какой-нибудь оси равна нулю, то главный момент количеств движения системы относительно этой оси будет величиной постоянной.

Эти результаты выражают собою закон сохранения главного момента количеств движения системы. Из них следует, что внутренние силы изменить главный момент количеств движения системы не могут.

Закон сохранения момента количеств движения (импульса) лежит в основе работы гироскопа – устройства, широко применяющегося в навигационных приборах для автоматического управления движением тел – «автопилот», и во многих других устройствах навигации и управления.

 

Случай вращающейся системы.

Рассмотрим систему, вращающуюся вокруг неподвижной (или проходящей через центр масс) оси Оz. Тогда . Если в этом случае , то

Отсюда приходим к следующим выводам.

а) Если система неизменяема (абсолютно твердое тело), то   и, следовательно, , т. е. твердое тело, закреплен­ное на оси, вращается в этом случае с постоянной угловой скоростью.

б) Если система изменяема, то под действием внутренних (или внешних) сил отдельные ее точки могут удаляться от оси, что вызы­вает увеличение IZ, или приближаться к оси, что приведет к умень­шению IZ. Но поскольку , то при увеличении момента инерции угловая скорость системы будет уменьшаться, а при умень­шении момента инерции - увеличиваться. Таким образом, действием внутренних сил можно изменить угловую скорость вращения системы, так как постоянство Кz не означает вообще постоянства .

Рассмотрим некоторые примеры:

а) Опыты с платформой Жуковского. Для демонстра­ции закона сохранения момента количеств движения удобно пользо­ваться простым прибором, называемым «платформой Жуковского». Это круглая горизонтальная платформа на шариковых опорных под­шипниках, которая может с малым трением вращаться вокруг верти­кальной оси z. Для человека, стоящего на такой платформе,

.

и, следовательно, . Если человек, разведя руки в стороны, сообщит себе толчком вращение вокруг вертикальной оси, а затем опустит руки, то величина IZ уменьшится и, следовательно, угловая скорость вра­щения возрастет. Таким способом увеличения угловой скорости враще­ния широко пользуются в балете, при прыжках в воздухе (сальто) и т. п.

Далее, человек, стоящий на платформе неподвижно (Кz=0), мо­жет повернуться в любую сторону, вращая вытянутую горизонтально руку в противоположном направлении. Угловая скорость вращения человека при этом будет такой, чтобы в сумме величина Кz системы осталась равной нулю.

б) Раскачивание качелей. Давлением ног (сила внутрен­няя) человек, стоящий на качелях, раскачать их не может. Сделать это можно следующим образом. Когда качели находятся в левом верх­нем положении A0, человек приседает. При прохождении через вер­тикаль он быстро выпрямляется. Тогда массы приближаются к оси вращения z, величина IZ уменьшается, и угловая скорость  скачком возрастает. Это увеличение  приводит в конечном счете к тому, что качели поднимутся выше начального уровня A0. В правом верхнем положении, когда , человек опять приседает (на величине  это, очевидно, не скажется); при прохождении через вертикаль он снова выпрямляется и т.д. В результате размахи качелей будут возрастать.

в) Реактивный момент винта. Воздушный винт, устано­вленный на вертолете, не только отбрасывает воздух вниз, но и сообщает отбрасываемой массе вращение. Суммарный момент количеств движения отбрасываемой массы воздуха и верто­лета должен при этом остаться равным нулю, так как система вначале была неподвижна, а силы взаимодействия между винтом и средой внутренние. Поэтому вертолет начинает вращаться в сторону, противоположную направлению вращения винта. Действующий при этом на вертолет вращающий момент называют реактивным моментом.

Чтобы предотвратить реактивное вращение корпуса одновинтового вертолета, на его хвостовой части устанавливают соответствующий рулевой винт. У многовинтового вертолета винты делают вращающи­мися в разные стороны.

 

Пример 7. Горизонтальная платформа массой m=100 кг вращается вокруг горизонтальной оси, проходящей через центр платформы, с частотой n1= 10 об/мин. Человек массой m0=60 кг стоит при этом на краю платформы. С какой частотой n2 начнет вращаться платформа, если человек перейдет от края платформы к ее центру? Считать платформу однородным диском, а человека – точечной массой.

Решение. Воспользуемся для решения задачи законом сохранения момента импульса для замкнутой системы «человек-платформа»:

В первом состоянии момент импульса системы состоял из момента импульса платформы и момента импульса, человека, стоящего на краю платформы, т.е.

Во втором состоянии момент импульса системы изменился за счет того, что момент импульса человека стал равным нулю, т.к. он перешел в центр платформы, где его момент инерции как материальной точки равен нулю, поскольку ось вращения проходит через него. Поэтому

Отсюда

Частота вращения платформы станет

 

Пример 8. Муха ползает по ободу колесика (рис.6.1), которое может вращаться с пренебрежимо малым трением вокруг неподвижной оси. Сохраняется ли момент импульса системы относительно оси вращения, если ось колесика закреплена: а) горизонтально, б) вертикально?

Рис.6.1

 

Решение. Направим координатную ось z вдоль оси вращения. Изменение момента импульса относительно этой оси определяется суммарным моментом всех внешних сил, действующих на систему тел:

Внешними по отношению к системе “колесо + муха” являются сила тяжести колеса m1g, сила тяжести мухи m2g, а также сила реакции N вала, на который насажено колесо.

В первом случае (рис.6.2), когда ось z расположена горизонтально, все силы находятся в плоскости,  перпендикулярной  оси   вращения. Моменты сил m1g и N равны нулю, т.к. линии,  вдоль  которых  они действуют, проходят через ось вращения. Момент же силы m2g в общем случае отличен от нуля (за исключением ситуаций, когда муха находится в верхней или нижней точке обода колеса) и равен m2gd, где d - плечо силы. Поэтому при горизонтальном положении оси колеса момент импульса системы не сохраняется, поскольку правая часть уравнения (1) не обращается в нуль.

Рис.6.2

 

При вертикальном положении оси колеса (рис.6.3) все внешние силы оказываются параллельными оси вращения. Моменты сил относительно оси z в этом случае равны нулю, Mz=0. Из уравнения (1) видно, что

Следовательно, момент импульса системы относительно вертикальной оси сохраняется.