Главная

 

Тестовые вопросы по теме "Центр тяжести тела"

 

- Что называется центром тяжести?

1. это точка приложения силы тяжести;   

2. это точка, через которую проходит равнодействующая сил тяжести, действующих на частицы данного тел;    

3. это точка, в которой совпадают центр симметрии тела и центра тяжести тела.   

 

- Где располагается центр тяжести тела, имеющего ось симметрии?

1. на оси симметрии;   

2. положение центра тяжести нельзя определить.    

 

- Зависят ли статический момент площади от расположения площади относительно оси?

1. зависит;     

2. не зависит.    

 

- Какой из перечисленных методов не применяется для нахождения центра тяжести тел?

1. метод нейтральных масс;    

2. метод симметрии;

3. метод разбиения;    

4. метод отрицательных масс.    

 

- Во сколько раз увеличится осевой момент инерции круга, если его диаметр увеличить в два раза?

1. в 2 раза;    

2. в 4 раза;

3. в 16 раз.    

 

- Координаты точек А и В прямолинейного стержня АВ: хА = 10 см, хВ = 40 см. Тогда координата хС центра тяжести стержня АВ в см равна…

1.       31

2.       20

3.       25

4.       17

5.       35

 

- Однородная пластина имеет вид прямоугольного треугольника АВД. Известны координаты вершин  хА = хВ = 3 см, хД = 9 см. Тогда координата центра тяжести хС  пластины в см равна…

1.       4

2.       5

3.       6

4.       7

5.       8

 

- Высота однородной пирамиды 0,8 м. Тогда расстояние от центра тяжести пирамиды до ее основания равно…

1.       0,4

2.       0,5

3.       0,6

4.       0,3

5.       0,2

 

- Полый треугольник АВД с углом при вершине Д равным 30° имеет координаты вершин: хА = 0; уА = 0; хВ = 2 м; уВ = 0; хД = 0. Тогда координата хС центра тяжести треугольника равна…

1.       0,542

2.       0,412

3.       0,873

4.       0,634

5.       0,729

 

- Высота однородной пирамиды 1,2 м. Тогда расстояние от центра тяжести пирамиды до ее основания равно…

1.       0,4

2.       0,5

3.       0,6

4.       0,3

5.       0,2

 

- Четверть дуги окружности АВ радиуса 20 см располагается в первой четверти декартовой системы координат Оху. Координаты точек: хА = 20; уА = 0; хВ = 0; уВ = 20. Тогда координата уС в см центра тяжести этой дуги равна…

1.       6,82       

2.       5,83

3.       9,54

4.       7,78

5.       8,91

 

- Контур половины диска ОА радиуса 1,03 м располагается в первой четверти декартовой системы координат Оху так, что основание этого контура ОА лежит на оси Ох. Координаты точек: хА = 2,06; уА = 0; хО = 0; уО = 0. Тогда координата уС в м центра тяжести этого контура  равна…

1.       1,23

2.       1,01

3.       0,4

4.       0,7

5.       0,9

 

- Расстояние от основания круглого однородного конуса (радиус основания равен 0,4 м, а угол при вершине конуса равен 90°) до его центра тяжести равно…

1.       0,2

2.       0,3

3.       0,4

4.       0,5

5.       0,1

 

- Наименьшее расстояние от дуги кругового сектора (получен делением диска радиуса 0,6 м на  6 равных секторов) до центра его тяжести равно…

1.       0,218

2.       0,314

3.       0,193

4.       0,295

5.       0,164

 

- Выбрать формулы для расчета координат центра тяжести однородного тела, составленного из объемных частей

 

- Выбрать формулы для расчета координат центра тяжести неоднородного тела, составленного из объемных частей

 

- Два одинаковых однородных стержня длиной L соединены концами под прямым углом. Абсцисса центра тяжести С полученной фигуры...

1.

2.

3.

4.

 

- Для плоской однородной пластинки, изображенной на рисунке, координаты центра тяжести при заданной системе координат- это...

1.

2.

3.

4.

5.

 

- Для плоской однородной пластинки, изображенной на рисунке, координаты центра тяжести при заданной системе координат- это...

1.

2.

3.

4.

5.

 

- Для плоской однородной пластинки, изображенной на рисунке, координаты центра тяжести при заданной системе координат- это...

1.

2.

3.

4.

5.

 

- Для плоской однородной пластинки, изображенной на рисунке, координаты центра тяжести при заданной системе координат- это...

1.

2.

3.

4.

5.

 

- Для плоской однородной пластинки, изображенной на рисунке, координаты центра тяжести при заданной системе координат- это...

1.

2.

3.  

4.

5.

 

- Для плоской однородной пластинки, изображенной на рисунке, координаты центра тяжести при заданной системе координат- это...

1.

2.

3.

4.

5.

 

- Для плоской однородной пластинки, координаты центра тяжести при заданной системе координат- это...

1.

2.

3.

4.

5.

 

- Для плоской однородной пластинки, изображенной на рисунке, координаты центра тяжести при заданной системе координат- это...

1.

2.

3.

4.

5.

 

- Координата X центра тяжести линейного профиля, представленного на рисунке, равна...

1. 1

2. 2

3. 0,5

4. 1,8

5. 0,2

 

- Однородная пластина в виде прямоугольного треугольника расположена в плоскости xOy.

Координата  центра тяжести равна...

1. 6

2. 4

3. 8

4. 3

 

- На рисунке изображена плоская однородная прямоугольная пластинка с прямоугольным вырезом. Точка наиболее близкая к положению центра тяжести пластинки – это точка...

1. B

2. C

3. D

4. A

5. E

 

- Координата  центра тяжести однородной призмы, представленной на рисунке, равна...

1. 7,5

2. 1

3. -0,5

4. -2

 

- Координата zc центра тяжести неправильной пирамиды, представленной на рисунке, равна...

1. a

2.

3.

4.

 

- Вычислить статический момент данной плоской фигуры относительно оси 0x

  1. 36103 мм3;
  2. 72103 мм3;
  3. 120103 мм3;    
  4. 60103 мм3.

 

- Определить координату центра тяжести фигуры 2 относительно оси

a = 270 мм; b =150 мм; с = 90 мм

  1. 150 мм;
  2. 180 мм;  
  3. 160 мм;
  4. 30 мм.

 

- Определите координату ус центра тяжести  фигуры 1

  1. 2,75 см;
  2. 7,25 см;     
  3. 5 см;
  4. 4,25 см.

 

- Вычислить координату хс центра тяжести составного сечения

  1. 23,8;  
  2. 28;
  3. 18,8;
  4. 12,5.

 

- Что произойдет с координатами хС и уС, если увеличить величину основания треугольника до 90 мм?

  1. xС  и уС не изменятся;
  2. изменится только хС;    
  3. изменится только уС;
  4. изменится и xС,  и уС.

 

- В каком случае для определения положения центра тяжести необходимо определить две координаты расчетным путем?

  1. 1;
  2. 2;
  3. 3;
  4. 4.  

 

- В каком случае координата центра тяжести фигуры уС = 4 мм?

  1. 1;
  2. 2; 
  3. 3;
  4. 4.

 

- Определите координату xС центра тяжести фигуры

  1. 250 мм;
  2. 230 мм;
  3. 188 мм;
  4. 414 мм.    

 

- Определить координаты центра тяжести для фигуры 2

  1. 2; 1;
  2. 2; 6;   
  3. 1; 5;
  4. 3; 4.

 

- Укажите, в каком случае координата центра тяжести треугольника yc = 6 мм

  1. A;
  2. Б;   
  3. B;
  4. верный ответ не приведен.

 

- В каком случае для определения центра тяжести достаточно определить одну координату расчетным путем?

 

  1. 1;
  2. 2;
  3. 3;
  4. 4.    

 

- В каком случае при определении центра тяжести плоской фигуры эту фигуру нельзя разбить на две части с известными положениями центра тяжести?

  1. 1;
  2. 2;   
  3. 3;
  4. 4.

 

- Определить координаты центра тяжести фигуры

  1. 0; 108 мм;
  2. 0; 127 мм;   
  3. 0; 116 мм;
  4. 0; 169 мм.

 

- Определить координаты центра тяжести для фигуры 1

  1. 4; 1;
  2. 6; 7;   
  3. 4; 2;
  4. 6; 5.

 

- Вычислить статический момент данной плоской фигуры относительно оси 0х

  1. 9103 мм3;
  2. 18103 мм3;    
  3. 36103 мм3;
  4. 42103 мм3.

 

- Определить координаты центра тяжести фигуры 2

a = 80 мм; b = 90 мм; с =30 мм; d =  f = 20 мм

  1. хС =   - 40 мм; уС = 50 мм;   
  2. хС =   - 40 мм; уС = 35 мм;
  3. хС =   25 мм; уС = 50 мм;
  4. хС =   - 25 мм; уС = 30 мм.

 

- Определить координаты уС центра тяжести фигуры 1

  1. 64 мм;
  2. 83 мм;    
  3. 99 мм;
  4. 163,5 мм.

 

- Вычислить координату хС центра тяжести составного сечения

  1. 19 мм;   
  2. 21 мм;
  3. 187 мм;
  4. 25 мм.

 

- Что произойдет с координатами хС и уС, если увеличить высоту треугольника вдвое?

  1. изменится и xС,  и уС;
  2. изменится только хС;
  3. изменится только уС;    
  4. xС  и уС не изменятся.

 

- В каком случае для определения положения центра тяжести необходимо выбрать две координаты центра тяжести по ГОСТ?

  1. 1;
  2. 2;
  3. 3;    
  4. 4.

 

- В каком случае координата центра тяжести фигуры уС = 6 мм?

  1. 1;
  2. 2;
  3. 3;
  4. 4.    

 

- Определить координаты центра тяжести фигуры

  1. 10; 4;
  2. 5; 4;
  3. 4; 8;
  4. 5; 8.    

 

- Определить координаты центра тяжести для фигуры 2

1.         7; 9,5;

2.         11; 3;

3.         7; 5;

4.         10; 3.


email: KarimovI@rambler.ru

Адрес: Россия, 450071, г.Уфа, почтовый ящик 21

 

Строительная механика   Сопротивление материалов

Прикладная механика  Детали машин  Теория машин и механизмов

 

 

 

00:00:00

 

Top.Mail.Ru